Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993 | 38 | 2 |
Tytuł artykułu

Morphological asymmetry in mammals: genetics and homeostasis reconsidered

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It has been hypothesized that developmental stability is increased at higher levels of genetic variability (heterozygosity) in animals. However, the existence of this relationship is questionable for homeotherms in general and mammals in particular. The difference between the sides of a bilateral character in an individual is a measure of fluctuating asymmetry that can be used as a measure of the developmental stability of mammals. Increased developmental stability should result in a greater degree of similarity between the right and left side of the body even though environmental variability would tend to increase the differences between right and left sides of the body. It is necessary to separate the effects of the three types of asymmetry so that an accurate estimate of the variance attributable to fluctuating asymmetry can be made. In addition, many early studies of asymmetry in poikilotherms used meristic characters (such as scale counts), and these types of characters are not easily studied in mammals. Mammals, because of their precise regulation of body temperature show little phenotypic effect of environmental variability, and thus may exhibit low absolute levels of asymmetry. Mammals may also be able to reduce the level of asymmetry during their prolonged intrauterine development and juvenile growth period. The literature is reviewed relative to relationships between genetic variation and asymmetry in mammals. Hypotheses are reviewed as they relate to the relationship between fluctuating asymmetry and heterozygosity observed in previous studies. Finally, recommendations are put forth regarding the design and interpretation of future research into the relationship between developmental homeostasis and genetic variability.
Wydawca
-
Rocznik
Tom
38
Numer
2
Opis fizyczny
p.7-18,fig.
Twórcy
autor
  • University of Georgia's, Box 'Drawer E', Aiken, SC, 29802, USA
autor
autor
autor
Bibliografia
  • Allendorf F. W. and Leary R. F. 1986. Heterozygosity and fitness in natural populations of animals. [In: Conservation biology - The science of scarcity and diversity. M. E. Soulé, ed]. Sinauer Ass. Inc. Publ., Sunderland, MA: 57 - 76.
  • Chakraborty R. 1981. The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98: 461 - 466.
  • Cothran E. G., Chesser R. K., Smith M. H. and Johns P. E. 1983. Influences of genetic variation and maternal factors on fetal growth rate in white-tailed deer. Evolution 37: 282 - 291.
  • Crow J. F. and Kimura M. 1970. An introduction to population genetics theory. Burgess Publishing Company, Minneapolis, MN.: 1-591.
  • Falconer D. S. 1981. Introduction to quantitative genetics, 3rd ed. Longman, NY.: 1 - 438.
  • Graham J. H. and Felley J. D. 1985. Genomic coadaptation and developmental stability within introgressed populations of Enneacanthus gloriosus and E. obesus (Pisces, Centrarchidae). Evolution 39: 104 - 114.
  • Handford P. 1980. Heterozygosity at enzyme loci and morphological variation. Nature 286: 261 - 262.
  • Hanski I., Peltonen A. and Kaski L. 1991. Natal dispersal and social dominance in the common shrew Sorex araneus. Oikos 62: 48 - 58.
  • Kieser J. A. and Groenveld H. T. 1991. Fluctuating odontometric asymmetry, morphological variability, and genetic monomorphism in the cheetah Acinonyx jubatus. Evolution 45: 1175 - 1183.
  • Lamb T., Novak J. M. and Mahoney D. L. 1990. Morphological asymmetry and interspecific hybridization: A case study using hylid frogs. J. evol. Biol. 3: 295 - 309.
  • Leamy L. 1984. Morphometric studies in inbred and hybrid house mice. V. Directional and fluctuating asymmetry. Am. Nat. 123: 579 - 593.
  • Leary R. F., Allendorf F. W. and Knudson R. L. 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301: 71 - 72.
  • Leary R. F., Allendorf F. W. and Knudson R. L. 1984. Superior developmental stability of heterozygotes of enzyme loci in salmonid fishes. Am. Nat. 124: 540 - 551.
  • Leary R. F., Allendorf F. W. and Knudson R. L. 1985a. Developmental instability as an indicator of reduced genetic variation in hatchery trout. Trans. Amer. Fish. Soc. 114: 230 - 235.
  • Leary R. F., Allendorf F. W. and Knudson R. L. 1985b. Developmental instability and high meristic counts in interspecific hybrids of salmonid fishes. Evolution 39: 1318 – 1326.
  • Leary R. F., Allendorf F. W. and Knudson R. L. 1985c. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308 - 314.
  • Lerner I. M. 1954. Genetic homeostasis. John Wiley, New York: 1 - 134.
  • Palmer A. R. and Strobeck C. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. Syst. 17: 391 - 421.
  • Patterson B. D. and Patton J. L. 1990. Fluctuating asymmetry and allozymic heterozygosity among natural populations of pocket gophers (Thomomys bottae). Biol. J. Linn. Soc. 40: 21 - 36.
  • Smith M. H., Chesser R. K., Cothran E. G. and Johns P. E. 1982. Genetic variability and antler growth in a natural population of white-tailed deer. [In: Antler development in Cervidae. R. D. Brown, ed]. Caesar Kleberg Wildlife Research Foundation, Kingsville, Texas: 365 - 387
  • Smith M. H., Scribner K. T., Johns P. E. and Rhodes O. E., Jr 1992. Genetics and antler development. [In: Global trends in wildlife management. B. Bobek, K. Perzanowski and W. Regelin, eds]. Trans. 18th Congr. UGB, Kraków, 1987. Świat Press, Kraków - Warszawa: 323 - 326.
  • Soulé M. E. 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396 - 401.
  • Swain D. P. 1987. A problem with the use of meristic characters to estimate developmental stability. Am. Nat. 129: 761 - 768.
  • Teska W. R., Smith M. H. and Novak J. M. 1991. Food quality, heterozygosity, and fitness correlates in Peromyscus polionotus. Evolution 44: 1318 - 1325
  • Van Valen L. 1962. A study of fluctuating asymmetry. Evolution 16: 125 - 142.
  • Vrijenhoek R. C. and Lerman S. 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768 - 776.
  • Wayne R. K., Modi W. S. and O'Brien S. J. 1986. Morphological variability and asymmetry in the cheetah (Acinonyx jubatus), a genetically uniform species. Evolution 40: 78 - 85.
  • Weir B. 1990. Genetic data analysis. Sinauer, Sunderland, MA: 1 - 377.
  • Willig M. R. and Owen R. D. 1987. Fluctuating asymmetry in the cheetah: methodological and interpretive concerns. Evolution 41: 225 - 227.
  • Wooten M. C. and Smith M. H. 1986. Fluctuating asymmetry and genetic variability in a natural population of Mus musculus. J. Mammal. 67: 725 - 732.
  • Zakharov V. M., Pankakoski E., Sheftel B. I., Peltonen A. and Hanski I. 1991. Developmental stability and population dynamics in the common shrew, Sorex araneus. Am. Nat. 138: 797 – 810.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-4e7f14ff-387b-4e21-adcf-9095fbea5edc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.