Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 48 | 1 | 77-83
Tytuł artykułu

Methods of minimal residual disease [MRD] detection in childhood haematological malignancies

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The appropriate management of haematological disorders must rely on a precise and long-term monitoring of the patient's response to chemotherapy and radiotherapy. Clinical data are not sufficient and that is why in the last decade it became the most important to improve the knowledge of haematological diseases on the basis of molecular techniques and molecular markers. The presence of residual malignant cells among normal cells is termed minimal residual disease (MRD). Nowadays a great progress has been made in the treatment of malignant diseases and in the development of reliable molecular techniques, which are characterised by high sensitivity (10⁻³-10⁻⁶) and ability to distinguish between normal and malignant cells at diagnosis and during follow-up. Especially, MRD data based on quantitative analysis (RQ-PCR, RT-RQ-PCR) appear to be crucial for appropriate evaluation of treatment response in many haematological malignancies. Implementation of standardized approaches for MRD assessment into routine molecular diagnostics available in all oncohaematological centres should be regarded nowadays a crucial point in further MRD study development.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
48
Numer
1
Strony
77-83
Opis fizyczny
p.77-83,ref.
Twórcy
autor
  • Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
autor
Bibliografia
  • Bader P, Hancock J, Kreyenberg H, Goulden NJ, Niethammer D, Oakhill A, et al. 2002. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia 16: 1668-1672.
  • Boublikova L, Kalinova M, Ryan J, Quinn F, O'Marcaigh A, Smith O, et al. 2006. Wilms' tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 20: 254-263.
  • Campana D, Coustan-Smith E, 1999. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 15; 38: 139-152.
  • Coustan-Smith E, Sancho J, Hancock ML, Razzouk BI, Ribeiro RC, Rivera GK, et al. 2002. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood 100: 2399-2402.
  • Cross NCP, Lin F, Chase A, Bungey J, Hughes TP, Goldman JM, 1993. Competitive polymerase chain reaction to estimate the number of BCR-ABL transcripts in chronic myeloid leukaemia after bone marrow transplantation. Blood 82: 1929-1936.
  • Dawidowska M, Derwich K, Szczepański T, Jółkowska J, van der Velden VHJ, Wachowiak J, Witt M, 2006. Pattern of immunoglobulin and T-cell receptor (Ig/TCR) gene rearrangements in Polish pediatric acute lymphoblastic leukemia patients implications for RQ-PCR-based assessment of minimal residual disease. Leukemia Res 30: 1119-1125.
  • De Haas V, Breunis WB, Dee R, Verhagen OJ, Kroes W, van Wering ER, et al. 2002. The TEL-AML1 real-time quantitative polymerase chain reaction (PCR) might replace the antigen receptor-based genomic PCR in clinical minimal residual disease studies in children with acute lymphoblastic leukemia. Br J Haematol 116: 87-93.
  • Dibenedetto SP, Lo Nigro L, Mayer SP, Rovera G, Schiliro G, 1997. Detectable molecular residual disease at the beginning of maintenance therapy indicates poor outcome in children with T-cell acute lymphoblastic leukemia. Blood 90: 1226-1232.
  • Faderl S, Kurzrock R, Estrov Z, 1999. Minimal residual disease in hematologic disorders. Arch Pathol Lab Med 123: 1030-1034.
  • Gaiger A, Linnerth B, Mann G, Schmid D, Heinze G, Tisljar K, et al. 1999. Wilms' tumour gene (WT1) expression at diagnosis has no prognostic relevance in childhood acute lymphoblastic leukaemia treated by an intensive chemotherapy protocol. Eur J Haematol 63: 86-93.
  • Galimberti S, Benedetti E, Morabito F, Papineschi F, Callea V, Fazzi R, et al. 2005. Prognostic role of minimal residual disease in multiple myeloma patients after non-myeloablative allogeneic transplantation. Leukemia Res 29: 961-966.
  • Gemano G, del Giudice L, Palatron S, Giarin E, Cazzaniga G, Biondi A, Basso G, 2003. Clonality profile in relapsed precursor-B-ALL children by GeneScan and sequencing analyses: consequences on minimal residual disease monitoring. Leukemia 17: 1573-1582.
  • Goulden N, Virgo P, Grimwade D, 2006. Minimal residual disease directed therapy for childhood acute myeloid leukaemia: the time is now. Br J Haematol 134: 273-282.
  • Hardling M, Wei Y, Palmquist L, Swolin B, Stockelberg D, Gustavsson B, et al. 2004. Serial monitoring of BCR-ABL transcripts in chronic myelogenous leukemia (CML) treated with imatinib mesylate. Med Oncol 21: 349-358.
  • Hillmen P, 2006. Beyond detectable minimal residual disease in chronic lymphocytic leukemia. Semin Oncol 33: 23-28.
  • Huang W, Sun G, Li X, S, Cao Q, Lu Y, Jang GS, Zhang FQ, et al. 1993. Acute promyelocytic leukaemia: Clinical relevance of two major PML-RAR-alpha isoforms and detection of minimal residual disease by retrotranscriptase/polymerase chain reaction to predict relapse. Blood 82: 1264-1277.
  • Jilani I, Keating M, Day A, William W, Kantarjian H, O'brien S, et al. 2006. Simplified sensitive method for the detection of B-cell clonality in lymphoid malignancies. Clin Lab Haematol 28: 325-331.
  • Kaeda J, Chase A, Goldman JM, 2002. Cytogenetic and molecular monitoring of residual disease in chronic myeloid leukaemia. Acta Haem 107: 64-75.
  • Kerst G, Kreyenberg H, Roth C, Well C, Dietz K, Coustan-Smth E, et al. 2005. Concurrent detection of minimal residual disease (MRD) in childhood acute lymphoblastic leukaemia by flow cytometry and real-time PCR. BR J Haematol 128: 774-782.
  • Kletzel M, Olzewski M, Huang W, Chou PM, 2002. Utility of WT1 as a reliable tool for the detection of minimal residual disease in children with leukemia. Pediatr Dev Pathol 5: 269-275.
  • Knechtli CJ, Goulden NJ, Hancock JP, Grandage VL, Harris EL, Garland LJ, et al. 1998. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood 92: 4072-4079.
  • Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C, et al. 2006. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol 24: 1507-1515.
  • Li AH, Forestier E, Rosenquist R, Roos G, 2002. Minimal residual disease quantification in childhood acute lymphoblastic leukemia by real-time polymerase chain reaction using the SYBR green dye. Exp Hematol 30: 1170-1177.
  • Li A, Zhou J, Zuckerman D, Rue M, Dalton V, Lyons C, etal. 2003. Sequence analysis of clonal immunoglobulin and T-cell receptor gene rearrangements in children with acute lymphoblastic leukemia at diagnosis and at relapse: implications for pathogenesis and for the clinical utility of PCR-based methods of minimal residual disease detection. Blood 15; 102: 4520- 4526.
  • Liang R, Chan D, Kwong YL, Chan V, 1997. Molecular detection of minimal residual disease for patients with leukaemia and lymphoma. Hong Kong Med J 3: 195-200.
  • Ładoń D, Pieczonka A, Jółkowska J, Wachowiak J, Witt M, 2001. Molecular follow up of donor lymphocyte infusion in CML children after allogeneic bone marrow transplantation. J Appl Genet 42: 547-552.
  • Malec M, van der Velden VH, Bjorklund E, Wijkhuijs JM, Soderhall S, Mazur J, et al. 2004. Analysis of minimal residual disease in childhood acute lymphoblastic leukemia: comparison between RQ-PCR analysis of Ig/TcR gene rearrangements and multicolor flow cytometric immuno- phenotyping. Leukemia 18: 1630-1636.
  • Mokany E, Todd AV, Fuery CJ, Applegate TL, 2006. Diagnosis and monitoring of PML-RARalpha- positive acute promyelocytic leukemia by quantitative RT-PCR. Methods Mol Med 125: 127-1247.
  • Munoz L, Lopez O, Martino R, Brunet S, Bellido M, Rubiol E, Sierra J, Nomdedeu JF, 2000. Combined use of reverse transcriptase polymerase chain reaction and flow cytometry to study minimal residual disease in Philadelphia positive acute lymphoblastic leukemia. Haematologica 85: 704-710.
  • Nakao M, Janssen JW, Flohr T, Bartram CR, 2000. Rapid and reliable quantification o minimal residual disease in acute lymphoblastic leukemia using rearranged immunoglobulin and T-cell receptor loci by LightCycler technology. Cancer Res 15; 60: 3281-3289.
  • Raanani P, Ben-Bassat I, 2004. Detection of minimal residual disease in acute myelogenous leukemia. Acta Haematol. 112: 40-54.
  • Robillard N, Cave H, Mechinaud F, Guidal C, Garnache-Ottou F, Rohrlich PS, et al. 2005. Four-color flow cytometry bypasses limitations of IG/TCR polymerase chain reaction for minimal residual disease detection in certain subsets of children with acute lymphoblastic leukemia. Haematologica 90: 1516-1523.
  • Rodrigues PC, Oliveira SN, Viana MB, Matsuda EI, Nowill AE, Brandalise SR, Yunes JA, 2006. Prognostic significance of WT1 gene expression in pediatric acute myeloid leukemia. Pediatr. Blood Cancer (in print).
  • Schuler F, Dolken G, 2006. Detection and monitoring of minimal residual disease by quantitative real-time PCR. Clin Chim Acta 363: 147-156.
  • Steinbach D, Schramm A, Eggert A, Onda M, Dawczynski K, Rump A, et al. 2006. Identification of a set of seven genes for the monitoring of minimal residual disease in pediatric acute myeloid leukemia. Clin Cancer Res 12: 2434-2441.
  • Stock W, Yu D, Karrison T, Sher D, Stone RM, Larson RA, Bloomfield CD, 2006. Quantitative real-time RT-PCR monitoring of BCR-ABL in chronic myelogenous leukemia shows lack of agreement in blood and bone marrow samples. Int J Oncol 28: 1099-1103.
  • Syvanen AC, 1999. From gels to chips: minisequencing primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mut 13: 1-10.
  • Szczepański T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ, 2002. Comparative analysis of Ig and TCRgene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 99: 2315-2323.
  • Szczepański T, Orfao A, van der Velden VHJ, San Miguel JF, van Dongen JM, 2001. Minimal residual disease in leukaemia patients. The Lancet Oncology 2: 409-417.
  • Tamura K, Kanazawa T, Suzuki M, Koitabashi M, Ogawa C, Morikawa A, 2006. Successful rapid discontinuation of immunosuppressive therapy at molecular relapse after allogeneic bone marrow transplantation in a pediatric patient with myelodysplastic syndrome. Am J Hematol 81: 139-141.
  • Toren A, Rechavi G, Nagler A, 1996. Minimal residual disease post-bone marrow transplantation for hemato-oncological diseases. Stem Cells 14: 300-311.
  • Uzunel M, Jaksch M, Mattsson J, Ringden O, 2003. Minimal residual disease detection after allogeneic stem cell transplantation is correlated to relapse in patients with acute lymphoblastic leukemia. Br J Haematol 122: 788-794.
  • van der Velden VHJ, Hochhaus A, Cazzaniga G, Szczepański T, Gabert J, van Dongen JJM, 2003. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17: 1013-1034.
  • van der Velden VH, Hoogeveen PG, Pieters R, van Dongen JJ, 2006. Impact of two independent bone marrow samples on minimal residual disease monitoring in childhood acute lymphoblastic leukaemia. Br J Haematol 133: 382-388.
  • Viehmann S, Teigler-Schlegel A, Bruch J, Langebrake C, Reinhardt D, Harbott J, 2003. Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangements. Leukemia 17: 1130-1136.
  • Willemse MJ, Seriu T, Hettinger K, d'Aniello E, Hop WCJ, Panzer-Grumayer R, et al. 2002. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 99: 4386-4393.
  • Zwick D, Cooley L, Hetherington M, 2006. Minimal residual disease testing of acute leukemia by flow cytometry immunophenotyping: a retrospective comparison of detection rates with flow cytometry DNA ploidy or FISH-based methods. Lab Hematol 12: 75-81.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-4c965351-3cce-4927-b248-27f57dbc0380
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.