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The distribution of the native pentapeptides, Met- and Leu-enkephalin, and their
cryptic forms (larger enkephalin-containing peptides) in adrenal medulla, spleen,
lung, salivary gland, vas deferens, heart, duodenum and jejunum were determined by
radioimmunoassay.

The proportion of total Met- and Leu-enkephalin represented by native
pentapeptide varied markedly among these tissues. Also, the distribution of native
and cryptic Met-enkephalin was distinct from that of Leu-enkephalin.

Repeated short-term administration of nicotine, 0.1 mg/kg 1p. six times at 30
min intervals, produced significant changes in native and cryptic Met-enkephalin
in adrenal medulla, jejunum, vas deferens, spleen and heart. This regimen of
nicotine also affected the concentration of Leu-enkephalin in adrenal medulla,
jejunum and spleen.
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INTRODUCTION

Numerous groups have shown evidence for the presence of Met- and
Leu-enkephalin in the central nervous system and peripheral tissues (1—4).

Met-enkephalin derived from proenkephalin is present in high
concentrations within the adrenal medullary chromaffin cells, heart, pancreas
and many other tissues (5, 6). Cosecretion of enkephalin-related peptides and
catecholamines has been demonstrated from chromaffin cells in vitro (7),
isolated perfused adrenal glands (5), adrenal gland in vivo (8), during splanchnic
nerve stimulation (3, 5) and restraint stress (9, 10).

It has also been shown that Leu-enkephalin may be derived from either
prodynorphin or proenkephalin containing neurons (8). The enkephalin and
dynorphin systems occur in many of the same brain areas but their distribution
in the peripheral tissues is still unknown.
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In a number of tissues (brain and peripheral) enkephalin-containing
peptides are converted to Met- and Leu-enkephalin in several enzymatic
reactions that involve trypsin-like and carboxypeptidase-like enzymes. Met-
and Leu-enkephalin derived enzymatically in vitro from larger precursors have
been referred to as cryptic Met- and Leu-enkephalins. We have established
more optimal conditions (4, 10) for the hydrolysis of such larger peptides using
trypsin and carboxypeptidase B, than were used previously by others (13 —15).

Although, the physiological relevance of cryptic enkephalins remains
unclear, recently has been reported that plasma cryptic Met-enkephalin
increased in response to restraint stress in rats (10). It has also been shown that
cryptic forms of Met- and Leu-enkephalin in brain changed under stress
conditions (4).

In spite of much investigation of nature of enkephalins, little is known
about the cryptic form of these pentapeptides in the peripheral tissues.

Futhermore, aside from the studies of enkephalin interaction with
dopamine (1, 16 —20) understanding of the neuropharmacological regulation of
the synthesis, processing and release of the enkephalins is still limited.

In viev of the obvious nicotinic regulation of enkephalin synthesis and
release in the adrenal, we have investigated the effects of repeated short-term
systemic nicotine administration on the concentrations of native and cryptic
(peptidase hydrolyzable) Met- and Leu-enkephalin in a number od selected
peripheral tissues.

MATERIALS AND METHODS

Adult, Sprague-Dawley rats (300 — 315 g) were kept individually in an environmental room at
24°C with controlled light-dark cycles (lights on from 0700 — 1900 hr) and provided with free access
to food and water.

In order to measure the effect of nicotine on the levels of Met-and Leu-enkephalin in various
peripheral tissues, two groups (n = 7) of rats were injected with nicotine (0.1 mg/kg i.p.) or saline
every 30 min for a total of six injections. Thirty min after the last injection, rats were sacrificed by
decapitation. Peripheral tissues (lung, spleen, heart, adrenal medulla, salivary gland, vas deferens,
Jejunum, duodenum) were dissected rapidly, weighed, homogenized immediately in 10 volumes of
0.5 N HCl containing 0.1% EDTA, and centrifuged at 40.000xg at 4°C for 30 min. Supernatant was
lyophilized and stored at —70°C. Lyophilized tissue samples were reconstituted in 1 ml of
phosphate buffer and aliquots taken for determination of native and cryptic Met- and
Leu-enkephalin.  Enkephalin-containing peptides (cryptic enkephalins) were hydrolyzed
enzymically with trypsin and carboxypeptidase B as described previously (4). Briefly, we used
incubation at 37°C with trypsin 1 mg/g tissue for 30 min, then with carboxypeptidase B 0.05 mg/g
tissue plus trypsin inhibitor 2.5 mg/g tissue for 15 min.

Cryptic Met- or Leu-enkephalin concentrations were determined by subtracking the
concentration of native Met- or Leu-enkephalin from the concentration of total Met- or
Leu-enkephalin present in the aliquot after hydrolysis.

Native and total enkephalins were purified on Porapak columns comprised of 250 mg of
Porapak (Waters 80—100 mesh) in 3 ml of absolute ethanol. For more details see (10).
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Met-enkephalin immunoreactivity was quantitated using commercial antiserum developed in
rabbit (Immunonuclear Corp.), '?*I-Met-enkephalin (New England Nuclear) and Met-enkephalin
standard (Peninsula). The antiserum was used in a final dilution of 1:12,000; it showed
cross-reactivities of 100 percent with Met-enkephalin sulfoxide, 2 percent with Leu-enkephalin
and <1 percent with Met-enkephalin-Arg-Phe, Met-enkephalin-Arg-Gly-Leu or beta-endorphin.
Intra- and interassay coefficients of variation for the assay are 7 and 11 percent, respectively.
Recovery of standard Met-enkephalin added to brain homogenate and carried through the entire
extraction and radioimmunoassay procedures was 79 percent.

Leu-enkephalin immunoreactivity was quantitated using commercial antiserum developed in
rabbit (Immunonuclear Corp.), '*°I-Leu-enkephalin (New England Nuclear) and Leu-enkephalin
standard (Peninsula) in a total volume of 200 ul. The antiserum was used in a final dilution of
1:15,000 and it showed cross-reactivity of 4% with up to 100 pg Met-enkephalin, considerably
different from the 18% reported by the supplier using a different antiserum dilution; the supplier
also reported cross-reactivities of 0.6% with dynorpin and less than 0.002% with beta-endorphin,
substance P and somatostatin. Fifty percent displacement was 12 pg. Intra- and inter-assay
coefficients of variation for the assay are 9 and 14 percent, respectively.

Data were analyzed statistically by Student’s t-test (21).

RESULTS

Peripheral tissues concentrations of native and cryptic Met- and Leu-enkephalin

Native Met-enkephalin showed 30-fold range of variation in the peripheral
tissues from 0.27+0.03 (heart ventricle) to a maximum in duodenum of
8.44 +1.65 pmoles/g tissue (Table I). Cryptic Met-enkephalin showed 40-fold
range of variation from 1.92+0.11 to 77.83+8.50 pmoles/g tissue.

The molar ratios of cryptic to native Met-enkephalin ranged from 2.28 in
salivary gland to 31.01 in heart atrium (7able 3) suggesting that the
pentapeptide represents 3 to 43 percent of total hydrolyzable Met-enkephalin
in these tissues.

Native Leu-enkephalin showed a 100-fold range variation in the peripheral
tissues studied, excluding no detectable amount in heart atrium, whereas
cryptic Leu-enkephalin showed a 11-fold range (Table 2). The molar rations of
cryptic to native Leu-enkephalin ranged from 2.29 in jejunum to 69.30 in
adrenal medulla (Table 3), suggesting that the pentapeptide represents 1.5 to 43
percent of total hydrolyzable Leu-enkephalin in these tissues.

Effect of nicotine on concentrations of Met- and Leu-enkephalin in peripheral
organs

Nicotine administered six times every 30 min, each time at a dose of
0.1 mg/kg ip. resulted in significant changes of Met-enkephalin in few
peripheral tissues. The levels of native Met-enkephalin increased from
4.56+0.72 to 7.51+1.10 pmol/g tissue in jejunum (P <0.05) and decreased
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from 0.92+0.14 to 0.60+0.02 pmol/g tissue in spleen (P <0.05). This fall in
spleen was parallel with the increase of cryptic Met-enkephalin from 9.5+ 2.0
to 15.6+2.0 pmol/g tissue (P <0.05).

Also, this regimen of nicotine decreased cryptic Met-enkephalin in adrenal
medulla and total Met-enkephalin in vas deferens, heart ventricle and heart
atrium without affecting levels of native and cryptic forms.

No significant changes in native, cryptic and total Met-enkephalin in
lung, salivary or duodenum were found when compared to saline
controls.

An identical dosage of nicotine caused increase in the levels of native
Leu-enkephalin in adrenal medulla from 0.42 +0.07 to 0.77 4+ 0.08 pmol/g tissue
(P <0.05) and decrease in spleen from 0.66+0.09 to 0.39+0.04 pmol/g tissue
(P <0.05) (Table 2).

Interestingly, nicotine decreased the levels of total and cryptic
Leu-enkephalin in jejunum without affecting the native form. Lung, vas
deferens, salivary, heart ventricle, heart atrium and duodenum did not show
any changes in the native, total and cryptic forms of Leu-enkephalin after
nicotine treatment.

Nicotine decreased the molar ratios (7able 3) of cryptic/native and
total/native Met-enkephalin in the adrenal medulla, lung and jejunum
(P<0.05). These ratios were increased by 50% in spleen (P <0.05) after
treatment of nicotine.

The molar ratios of cryptic/native and total/native Leu-enkephalin were
increased by 50% in spleen and significantly decreased in heart ventricle,
adrenal medulla and jejunum after nicotine administration.

Nicotine increased the molar ratios of cryptic and total Met-enkephalin to
Leu-enkephalin in the jejunum from 1.88 to 4.85 and from 1.70 to 3.06
(P <0.05), respectively.

DISCUSSION

The opiate peptides, Met- and Leu-enkephalin, are present in the peripheral
tissues as native pentapeptides and extended forms which may have opioid
activity in their own right or may be precursors of the pentapeptides.

Met-enkephalin is derived from proenkephalin which contains four
copies of Met- and one copy of each: Met-enkephalin-Arg-Gly-Leu,
Met-enkephalin-Arg-Phe and Leu-enkephalin (5). It has also been shown that
in the brain Leu-enkephalin may be derived from either prodynorphin or
proenkephalin containing neurons (11). We can presume that the enkephalin
and dynorphin systems occur in the same peripheral tissues, but the
distribution of the opioid peptides, Met- and Leu-enkephalin, is uneven.
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We have found the highest level of native Met-enkephalin in the duodenum
followed by salivary gland, adrenal medulla and jejunum.

Much lover concentrations of Met-enkephalin were present in spleen, heart
(ventricle and atrium), vas deferens and lung.

The highest level of native Leu-enkephalin was observed in the same
tissues — duodenum, jejunum and salivary gland with the exception of the
adrenal medulla in which was 10 times lower than that for native
Met-enkephalin.

A similar uneven distribution of native enkephalin has been reported in
peripheral tissues (2, 6), there are some differences among those reports. The
discrepancies may be due to different methods of tissue collection and
estimation of enkephalins. These variations may represent differences in
reactivities of intermediate peptides to different antisera.

Our results showed that the level of native Met-enkephalin is much higher
than native Leu-enkephalin in all peripheral tissues studied, but the molar ratio
of Met-enkephalin to Leu-enkephalin varies from 11.20 in adrenal medulla to
1.17 in the jejunum. The level of cryptic Met-enkephalin is higher than that of
cryptic Leu-enkephalin in 6 of 9 tissues and lover in 3 of 9 i.e. vas deferens,
salivary gland and heart ventricle.

The presence of large amounts of enkephalin-like peptides in the adrenal
medulla of different species has been reported (22) but little is known about the
cryptic form of enkephalins in the other peripheral tissues.

Using optimal conditions for enzymatic hydrolysis with trypsin and
carboxypeptidase B reported previously (4, 10), we found increases of
Met-enkephalin to be about 2—4 fold in the vas deferens, salivary gland,
duodenum and jejunum; ten fold in the spleen and heart ventricle, eighteen-fold
in the lung and adrenal medulla and unexpectedly thirty fold in the heart
atrium after peptidase treatment. These differences suggest the highest degree
of processing proenkephalin to pentapeptide in the intestine tract and a lesser
degree in other tissues. The processing of proenkephalin in the adrenal medulla
seems to be less extensive than that in the central nervous system (4) what
suggests that the adrenal medulla is not a major Met-enkephalin source or that
the synthesis of total Met-enkephalin is increased.

Enzymatic hydrolysis increased immunoreactive Leu-enkephalin by 4-fold
in duodenum and jejunum, 10-fold in lung, spleen, salivary, 30 fold in vas
deferens and 80 fold in adrenal medulla and heart ventricle. The data suggests
that Leu-enkephalin in the vas deferens, adrenal medulla and heart ventricle is
derived largely from prodynorphin, whereas Leu-enkephalin in the other
tissues studied is probably derived also from proenkephalin.

In spite of very extensive study the neuropharmacologic regulation of
peripheral enkephalins remains poorly defined. Nicotine acts at neuromuscular
junctions, at autonomic ganglia and in the brain.
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Recent studies from a number of laboratories suggest interactions between
opioids and nicotine in behavioral and physiological processes (23). Opioids
reduce the number of nicotinic receptors on adrenal chromaffin cells and
decrease nicotine-induced secretion of catecholamines (24). On the other hand,
nicotine increases Met-enkephalin biosynthesis and release and increases the
level of Met-enkephalin mRNA in the adrenal, an effect blocked by the
nicotinic antagonist, hexamethonium (25).

In our study, nicotine given six times (total dose 0.6 mg/kg) caused increase
of native Met-enkephalin concentration without affecting the concentration of
cryptic form. It seems probable that this increase reflects increase in processing
cryptic forms to intermediate peptides and to Met-enkephalin. Also, it suggests
increase in synthesis of proenkephalin.

Eiden et al. (25) have found that exposure to 10 uM nicotine for 24 —72h
resulted in a gradual increase in total Met-enkephalin immunoreactivity in the
culture what was preceded by an increase in mRNA coding for proenkephalin.
The induction of mRNA by nicotine was rapid — an increase was detectable
within 2h of exposure to nicotine and was maximal by 8h. They also reported
that secretory products of adrenal (enkephalin, ATP, catecholamines) are
maximally released from the cuitured cells during the first 15 min of exposure
to nicotine. It seems that in our ir vivo study, nicotine first caused the depletion
of intracellular Met-enkephalin due to its release into the periphery and after
3h intracellular peptide stores were higher than the pre-stimulation levels,
indicating that compensatory biosynthesis has occured.

Similar increase of only native Met-enkephalin was observed in jejunum,
what might be considered that nicotine stimulated the synthesis and processing
the proenkephalin related peptides to the pentapeptide. However, it is also
possible that nicotine inhibited the release of native Met-enkephalin from
jejunum.

This regimen of nicotine seems to have inhibitory effect on synthesis of
cryptic Met-enkephalin in vas deferens, heart atrium and ventricle since
there was no changes in native form and decrease in cryptic form. It is
probable that the dose — 0.1 mg/kg given six times caused desensitization
to nicotine. Livett et al. (7) observed in adrenal cells culture that nicotinic
induction of enkephalin biosynthesis was maximal at the dose 5—10 pM
and was not observed with doses of nicotine higher than 1,000 pM. This
desensitization to nicotine was also characteristic of nicotine-induced
enkephalin and catecholamine release.

Nicotine-induced biosynthesis and Met-enkephalin release was clearly seen
in spleen; it was illustrated by significant increase of cryptic and decrease of
native peptide.

The effect of nicotine on Leu-enkephalin concentrations in peripheral
tissues was less extensive than that of Met-enkephalin. Nicotine might
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stimulated the processing of prodynorphin to native Leu-enkephalin in adrenal
medulla without increasing its release.

On the other hand, the concentration of native Leu-enkephalin in spleen
was much lower after nicotine treatment.

The significant decrease of cryptic Leu-enkephalin in jejunum may reflect
increase in release of Leu-enkephalin and processing of prodynorphin without
a compensatory increase in synthesis of prodynorphin. It is possible that
Leu-enkephalin immunoreactive material found in digestive tract is issue from
two different sources: the proenkephalin and the prodynorphin precursors as
demonstrated in central nervous system (26, 27).

The ratios of total/native or cryptic/native Met-enkephalin which are
higher in heart atrium, adrenal medulla, than in the other peripheral tissues
studied, suggest that there is less processing of proenkephalin and its
intermediate peptides to the pentapeptide in this tissues.

If nicotine causes the release of Met-enkephalin from adrenal medulla and
lung, than processing must also have increased since the ratios of total/native
and cryptic/native are lower.

In contrast, the total/native and cryptic/native Met-enkephalin ratios in
spleen were decreased after nicotine treatment what suggests increase of
proenkephalin synthesis and release of pentapeptide from the tissue.

Ratios of total/native and cryptic/native Leu-enkephalin in vas deferens,
heart ventricle and adrenal medulla were considerably higher than ratios of
total/native and cryptic/native Met-enkephalin in these tissues, consistent with
a hypothesis that prodynorphin is generally less processed than proenkephalin
in these tissues.

The significant decreases in the ratios of total/native nad cryptic/native
Leu-enkephalin in adrenal medulla heart ventricle, and jejunum after repeated
nicotine appear to reflect a decrease in synthesis of precursor and an increase in
release of native Leu-enkephalin.

This data showed that the effect of nicotine on the biosynthesis, processing
and release of proenkephalin and prodynorphin-derived peptides varied from
tissue to tissue.

In order to better define these effects, it will be necessary to measure the
effects of nicotine (and other stimuli) on the turnover of synthesis rates (kinetic
versus static parameters) of Met- and Leu-enkephalin.
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