Warianty tytułu
Języki publikacji
Abstrakty
In the present study, we discussed the biophysical mechanisms of stationary wa ter ex change with the surroundings by the Nitella translucens and Chara corallina plants. It was postulated that these plants, which subsist under total immersion in a water medium, conduct water exchange within single cells individually. With the application of the equations of mechanistic formalism for membrane transport to our investigations (Kargol and Kargol 2000, Kargol 2001, Kargol 2002, Kargol and Kargol 2003, 2003*), it was demonstrated that individual cells of these plants can simultaneously absorb and remove considerable amounts of water at constant cell volume, i.e. under stationary conditions. Water absorption is osmosis-driven, and its removal is effected by the cell turgor pressure.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.71-77,fig.,ref.
Bibliografia
- Agre P., Brown D., Nielson S. 1995. Aquaporin water channels: unanswered questions and unresolved controversies. Current Opinion in Cell Biology. 17: 472-483.
- Alberts B., Bray D., Johnson A., Lewis J., Raff M., Roberts K, Walter P. 1998. Essential Cell Biology. Garland Publishing, Inc. New York and London, 347-368.
- Crozier P.S., Rowler R.L. 2001. Molecular dynamics simulation of continuous current flow through a model biological membrane channel. Physical Review Letters. 86: 2467-2470.
- Curry M.R., Schachar-Hill B., Hill A.E. 2001. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations. J. Mem brane Biol., 115-123.
- Dainty J., Ginsburg B. 1964. The reflection coefficient of plant cell membranes for certain solutes, Biochimica et Biophysica Acta. 79: 129-137.
- Dąmbska J. 1964. Charophyta-Ramienice, Flora Słodkowodna Polski [Poland’s Freshwater Flora] T-13, PWN Warszawa, 5-73.
- Hertel A., Steudle E. 1997. The function water channels in Chara: The temperature dependence of water and solute flows provides evidence for composite transport and for a slippage of small organic solutes across water channels. Planta. 202: 324-335.
- House C.R. 1974. Water transport in cells and tissues. Edward Arnold (Publishers) LTD, 36-151.
- Kargol A. 1996. An integrated approach to water transport in a plant over long distances, J. Biol. Physics. 23: 157-173.
- Kargol A. 2001. A mechanistic model of transport processes in porous membranes generated by osmotic and hydrostatic pressures, J. Membrane Sci. 191: 61-69.
- Kargol M, Kargol A. 2003. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure. Gen. Physiol. Biophys. 22: 51-68.
- Kargol M. 1992. The graviosmotic hypothesis of xylem transport of water in plants, Gen. Physiol. Biophys. 11: 469-487.
- Kargol M. 2002. Mechanistic approach to membrane mass transport processes, Cellular and Molecular Biol. Let ters. 7: 983-993.
- Kargol M., Kargol A. 2000. Membrane transport generated by the osmotic and hydrostatic pressure. Correlation relation for parameters Lp, σ and ω, J. Biol. Phys. 26: 307-320.
- Kargol M., Kargol A. 2004. A new approach to the issues of water exchange regulation by a living cell under stationary conditions, J. Biology Physics – sending to publication.
- Kargol M., Kargol A. 2003*. Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations. Biophysical Chemistry 103: 117-127.
- Kargol M., Suchanek G., Kargol A. 2001. Modification and quantitative analysis of the Münch model in the integrated system of water translocation in plants, Gen. Physiol. Biophys. 20: 191-202.
- Katchalsky A., Curran P.F. 1965. Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, Massachusetts, 113-132.
- Kedem O., Katchalsky A. 1958. Thermodynamics analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta. 27: 229-246.
- Korohoda W. 1988. Integrity and dynamics of the cell surface complex. Ninth School on Bio physics of Membrane Transport, School Proceedings, vol. I, 472-483.
- Levitt D.G. 1974. A new theory of transport for cell membrane pores (I. General theory and application to red cell). Biochim. Biophys. Acta. 373: 115-131.
- Mengel K., Kirkby E.A. 1983. Principles of Plant Nutrition. PWRiL, Warszawa, 10-250.
- Nałęcz K.A. 1996. Transport of water through biological membranes. Postępy Biochemii. 42 (2): 161-167.
- Salisbury F.B., Ross C. 1975. Plant Physiology. Wadsworth Publishing Company, Inc. Belmont, California, 98-180.
- Schütz K., Tyerman S.D. 1997. Waterchannel in Chara corallina, J. Experim. Botany 48: 1511-1518.
- Sha’afi R. J., Rich G. T., Mikulecky D. C., Solomon A. K. 1970. Determination of urea permeability in red cells by minimum method, The J. Gen. Physiol. 55: 427-450.
- Sha’afi R.J., Gary–Bobo C.M. 1973. Water and nonelectrolytes permeability in mammalian red cell membranes. Progress in Biophysics and Molecular Biology (vol. 26), Eds. J.A.V. Butler and D. Noble, Pergamon Press – Oxford, New York, 105-146.
- Siebens A.W. 1985. Cellular volume control. Physiology and Patho-physiology. D.W. and Glebisch, G., Raven Press, New York, 91-115.
- Solomon A. K. 1968. Characterization of biological membranes by equivalent pores. J. Gen. Physiol. 5 (2): 335-364.
- Stein W.P. 1967. The Movement of Molecules Across Cell Membranes, Acad. Press, New York and London, 41-64.
- Stryer L. 2000. Biochemistry. PWN, Warszawa, 3-16.
- Wilkins M.B. 1976. The Physiology of Plant and Development, MacGrow-Hill Publ. Co., 197-418.
- Wolf M.B. 1980. A simulation study of the anomalous osmotic behaviour of red cells. J. Theor. Biol. 83: 687-700.
- Zimmerman M.H., Brown C.L. 1971. Trees, Structure and Function, Springer-Verlag, New York Inc., 213-339.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-4238ae7c-242e-4edc-9015-03d5439f7463