Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 3 |
Tytuł artykułu

Chymotryptic hydrolysis of lentil meal proteins and characteristics of the resulting hydrolysates

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lentil meal proteins were treated by chymotrypsin. Hydrolysis was controlled with the pH-stat method. Degree of hydrolysis (DH) was evaluated and after 120 min of the process amounted to 13%. SDS-PAGE and SE-HPLC methods were used to study molecular weight distribution of lentil meal proteins and their chymotryptic hydrolysates of DH 2%, 4%, 8% and 12%. Bands in the range of 21–66 kDa were predominant on the electrophoregram of lentil proteins. Chymotrypsin treatment resulted in releasing the hydrolysis products of both high molecular weight (62,000; 30,500 Da) molecules and small peptides (<6,500 Da). At the first stage of hydrolysis (DH 2.0%) intermediate products are formed, which are then further hydrolysed. Chromatographic separation confirmed the results of SDS-PAGE. Larger polypeptides and unhydrolysed proteins are present in hydrolysate of DH 12% but products of hydrolysis with molecular weight of 0.5–6.5 kDa are predominant. No simple correlation between degree of hydrolysis and intensity of bitterness and astringency sensation was noticed. Bitterness of hydrolysates was not high (2.25-2.35 a.u.).
Wydawca
-
Rocznik
Tom
58
Numer
3
Opis fizyczny
p.351-357,fig.,ref.
Twórcy
autor
  • Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
autor
Bibliografia
  • 1. Adler-Nissen J., Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. J. Chem. Tech. Biotechnol., 1984, 34B, 215–222.
  • 2. Adler-Nissen J., Enzymatic hydrolysis of food proteins. 1986, Elsevier Applied Science, London, 1st ed., pp. 57–68; 132–188.
  • 3. Amarowicz R., Troszyńska A., Barylko-Pikielna N., Shahidi F., Polyphenolics extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipids, 2004, 11, 278–286.
  • 4. AOAC, Offical Methods of Analysis, 1990, 15th ed., Arlington Virginia, USA.
  • 5. Apar D.K., Ozbek B., Hydrolysis and solubilization of corn gluten by Neutrase. J. Chem. Technol. Biotechnol., 2007, 82, 1107–1114.
  • 6. Bhatty R.S., In vitro hydrolysis of pea, faba bean and lentil meals and isolated protein fractions by pepsin and trypsin. Can. Inst. Food Sci. Technol. J., 1988, 21, 66–71.
  • 7. Bombara N., Pilosof A.M.R., Anon M.C., Kinetics of wheat proteins solubilization with a fungal protease. Lebensm.-Wiss. Technol., 1992, 25, 527–531.
  • 8. Chabanon G., Chevalot I., Framboisier X., Chenu S., Marc I., Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochem., 2007, 42, 1419–1428.
  • 9. Cho M.J., Unklesbay N., Hsieh F., Clarke A.D., Hydrophobicity of bitter peptides from soy protein hydrolysates. J. Agric. Food Chem., 2004, 52, 5895–5901.
  • 10. Constantinides A., Adu-Amankwa B., Enzymatic modification of vegetable protein: mechanism, kinetics, and production of soluble and partially soluble protein in a batch reactor. Biotechnol. Bioeng., 1980, 22, 1543–1565.
  • 11. Frokjaer S., Use of hydrolysates for protein supplementation. Food Technol., 1994, 10, 86–88.
  • 12. Gonzalez-Tello P., Camach F., Jurado E., Paez M.P., Guadox E.M., Enzymatic hydrolysis of whey proteins: I. Kinetic models. Biotechnol. Bioeng., 1994, 44, 523–528.
  • 13. Guan X., Yao H., Chen Z., Shan L., Zhang M., Some functional properties of oat bran protein concentrate modified by trypsin. Food Chem., 2007, 101, 163–170.
  • 14. Hajos G., Elias I., Halash A., Methionine enrichment of milk protein by enzymatic peptide modyfication. J. Food Sci., 1988, 53, 739–742.
  • 15. Hames B.D., One-dimensional polyacrylamide gel electrophoresis. 1990, in: Gel Electrophoresis of Proteins (eds. B.D. Hames, D. Rickwood). IRL Press, Oxford University Press, pp. 16–67.
  • 16. Harwalkar V.R., Characterization of an astringent flavour fraction from Cheddar cheese. J. Dairy Sci., 1972, 55,735–741.
  • 17. Humiski L.M., Aluko R.E., Physicochemical and bitterness properties of enzymatic pea protein hydrolysates. J. Food Sci., 2007, 72, 605–611.
  • 18. Jung S., Murphy P.A., Johnson L.A., Physicochemical and functional properties of soy protein substrates modified by low levels of protease hydrolysis. J. Food Sci., 2005, 70, 180–187.
  • 19. Karamać M., Amarowicz R., Kostyra H., Sijtsma L., Hydrolysis of pea protein isolate ‘Pisane’ by trypsin. Nahrung, 1998, 42, 219.
  • 20. Karamać M., Amarowicz R., Kostyra H., Effect of temperature and enzyme/substrate ratio on the hydrolysis of pea protein isolates by trypsin. Czech J. Food Sci., 2002, 20, 1–6.
  • 21. Karamać M., Flaczyk E., Wanasundara P.K.J.P.D., Amarowicz R., Angiotensin I-converting enzyme (ACE) inhibitory activity of hydrolysates obtained from muscle food industry by-products – a short report. Pol. J. Food Nutr. Sci., 2005, 55, 133–138.
  • 22. Kim J.M., Wang K.M., Kim K.M., Koh J.H., Suh H.J., Preparation of corn gluten hydrolysate with angiotensin I converting enzyme inhibitory activity and its solubility and moisture sorption. Process Biochem., 2004, 39, 989–994.
  • 23. Kong X., Zhou H., Qian H., Enzymatic hydrolysis of wheat gluten by proteases and properties of the resulting hydrolysates. Food Chem., 2007, 102, 759–763.
  • 24. Lahl W.J., Braun S.D., Enzymatic production of protein hydrolysates for food use. Food Technol., 1994, 10, 68–71.
  • 25. Lo W.M., Li-Chen E.C., Angiotensin I converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein. J. Agric. Food Chem., 2005, 53, 3369–3376.
  • 26. Lopez-Amoros M.L., Hernandez T., Estrela I., Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Comp. Anal., 2006, 19, 277–283.
  • 27. Ma Y., Lin L., Sun D.W., Preparation of high Fischer ratio oligopeptide by proteolysis of corn gluten meal. Czech J. Food Sci., 2008, 26, 38–47.
  • 28. Margot A., Flaschel E., Renken A., Empirical kinetic models for tryptic whey protein hydrolysis. Process Biochem., 1997, 28, 481–490.
  • 29. Mahmoud M.I., Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technol., 1994, 10, 89–85.
  • 30. Mejbaum-Katzenellenbogen W., Mochnacka I., Practical biochemistry course. 1969, PWN, Warsaw, pp. 223–225 (in Polish).
  • 31. Neves V.A., Lourenco E.J., Isolation and in vitro hydrolysis of globulin G1 from lentils (Lens Culinaris, Medik). J. Food Biochem., 1995, 19, 109–120.
  • 32. Panasiuk R., Amarowicz R., Kostyra H., Sijtsma L., Determination of α-amino nitrogen in pea protein hydrolysates: a comparison of three analytical methods. Food Chem., 1998, 62, 363–367.
  • 33. Pena-Ramos E.A., Xiong Y.L., Antioxidant activity of soy protein hydrolysates in a liposomal system. J. Food Sci., 2002, 67, 2952–2956.
  • 34. PN-ISO 4121, Sensory analysis – Methodology – Evaluation of food products by methods using scales. 1998, Polish Committee for Standardization, pp. 1–11 (in Polish).
  • 35. Rozan P., Lamghari R., Linder M., Villaume C., Fanni J., Parmentier M., Mejean L., In vivo and in vitro digestibility of soybean, lupine, and rapeseed meal proteins after various technological processes. J. Agric. Food Chem., 1997, 45, 1762–1769.
  • 36. Saha B.C., Hayashi K., Debittering of protein hydrolysates. Biotechnol. Adv., 2001, 19, 355–370.
  • 37. Schmidl M.K., Taylor S.L., Nordle J.A., Use of hydrolysate‑based products in special medical diets. Food Technol., 1994, 10, 77–85.
  • 38. Seo W.H., Lee H.G., Baek H.H., Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis. J. Food Sci., 2008, 73, 41–46.
  • 39. Shahidi F., Amarowicz R., Antioxidant activity of protein hydrolysates from aquatic species. J. Am. Oil Chem. Soc., 1996, 73, 1197–1199.
  • 40. Slattery H., Fitzgerald R.J., Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase. J. Food Sci., 1998, 3, 418–422.
  • 41. Wang N., Daun J.K., Effect of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem., 2006, 95, 493–502.
  • 42. Wang J., Zhao M., Zhao Q., Jiang Y., Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem., 2007, 101, 1658–1663.
  • 43. Wróblewska B., Karamać M., Amarowicz R., Szymkiewicz A., Troszyńska A., Kubicka E., Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis. Int. J. Food Sci. Technol., 2004, 39, 839–850.
  • 44. Vegarud G.E., Langsrud T., The level of bitterness and solubility of hydrolysates produced by controlled proteolysis of caseins. J.Dairy Res., 1989, 56, 375–379.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-400a9973-dac1-4395-a011-4fc46f2f01b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.