Warianty tytułu
Języki publikacji
Abstrakty
Fluorescence resonance energy transfer (FRET) is a technique widely used in studies of interchromophoric distances in biomolecules such as peptides, proteins and nucleic acids. FRET is especially useful in determination of conformational changes caused by a solvent, presence of denaturing agents, diffusion and other external factors. Precision of interchromophoric distances obtained using the FRET technique is comparable with that of low-resolution X-ray diffraction and NMR data. Comparison of FRET results with the crystal structure for several proteins is reviewed. Moreover, the effect of the orientation factor K2 value on FRET results and determinants of k2 are discussed.
Twórcy
autor
- University of Gdansk, J.Sobieskiego 18, 80-952 Gdansk, Poland
autor
autor
Bibliografia
- 1. Förster. T. (1948) Intramolecular energy migration and fluorescence. Ann. Phys. (Leipzig) 2. 55-75, English translation by Knox, R.S., University of Rochester, 1974.
- 2. Förster, T. (1959) Transfer mechanism of electronic excitation. Discus. Faraday Soc. 27, 7-17.
- 3. Förster. T. (1960) Transfer mechanism of electronic excitation energy. Radiat. Res. Sup pi. 2. 326-339.
- 4. Förster, T. (1965) Delocalized excitation and excitation transfer; in Modern Quantum Chemistry (Sinanoglu, O., cd.) vol. 3, pp. 93 137, Academic Press, New York.
- 5. Turro, N.J. (1977) Energy transfer processes. Pure Appl. Chem. 49. 405-429.
- 6. Speiser, S. (1996) Photophysics and mechanism of intramolecular electronic energy transfer in bichromophoric system: Solution and supersonic jet studies. Chem. Rev. 96, 1953-1976.
- 7. Clegg, R.M. (1996) Fluorescence resonance energy transfer; in Fluorescence Imaging Spectroscopy and Microscopy (Wang, X.F. & Herman, B.. eds.) Chemical Analysis Series, vol. 137, John Wiley & Sons Inc., New York.
- 8. Dexter, D.L. (1953) A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836-850.
- 9. Jovin, T.M. & Jovin-Arndt, D. (1989) Luminescence digital imaging microscopy. Annu. Rev. Biophys. Chem. 18, 271-308.
- 10. Young, R.M., Arnctte, J.K., Roess, D.A. & Barisas, B.G. (1994) Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleach- ing kinetics. Biophys. J. 67, 881-888.
- 11. Mekler, M.V. (1994) A photochemical technique to enhance sensitivity of detection of fluorescence resonance energy transfer. Pho- tochem. Photobiol. 59, 615-620.
- 12. Schiller, P. (1985) Application of fluorescence techniques in studies of peptide conformation and interaction. Peptides 7, 116-164.
- 13. Fairclough, R.H. & Cantor, C.R. (1978) The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzy- mol. 48, 347-379.
- 14. Mugnier, J., Pouget, J., Bourson, J. & Valeur, B. (1985) Efficiency of intramolecular electronic energy transfer in coumarin bichromophoric molecules. J. Luminescence 33, 273- -300.
- 15. Clegg, R.M. (1992) Fluorescence resonance energy transfer and nucleic acid. Methods Enzymol. 211, 353-388.
- 16. Wu, P. & Brand, L. (1994) Resonance energy transfer: Methods and application. Anal. Bio- chem. 218, 1-13.
- 17. Sel vin, P.R. (1995) Fluorescence resonance energy transfer. Methods Enzymol. 246, 300-334.
- 18. Wiczk, W. & Lankiewicz, L. (1996) Average distance and distance distribution estimation by steady-state energy transfer measurement. Wiad. Chemiczne 50. 99-124, (in Polish).
- 19. Wiczk, W. (1996) Application of Radiationless Energy Transfer in Studies of Conformation of Biologically Active Compounds. Habilitation dissertation, Wyd. Uniwersytetu Cdańskiego, Gdańsk, (in Polish).
- 20. Cheung, U.C. (1991) Resonance energy transfer; in Topics in Fluorescence Spectroscopy (Lakowicz, J.R., ed.) vol. 2, Principles, pp. 127-171, Plenum Press. New York.
- 21. Schiller, P. (1975) Intramolecular distances: Energy transfer; in Biochemical Fluorescence: Concepts (Chen, R.F. & Edelhoch, H., eds.) vol. 1, pp. 258-303, Marcel Dekker, New York.
- 22. Stryer, L. & Haugland, R.P. (1967) Energy transfer: A spectroscopic ruler. Proc. Natl. Acad. Sci. U.S.A. 58, 719-726.
- 23. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819-846.
- 24. Steinberg, I.Z. (1971) Long-range nonradia- tive transfer of electronic energy in protein and peptides. Annu. Rev. Biochem. 40, 83- -114.
- 25. Mathis, G. (1993) Rare earth cryptants and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953-1959.
- 26. Dos Remedios, C.G. & Moens, P.D. (1995) Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins. J. Struc. Biol. 115, 175-185.
- 27. Dos Remedios, C.G., Miki, M. & Barden, J.A. (1987) Fluorescence resonance energy transfer measurements of distance in actin and myosin: A critical evaluation. J. Muscle Res. Cell Motil. 8. 97-118.
- 28. Amir, D. & Haas, E. (1987) Estimation of intramolecular distance distribution in bovine pancreatic trypsin inhibitor by site-specific labeling and nonradiative excitation energy-transfer measurements. Biochemistry 26, 2162-2175.
- 29. Haas, E. (1986) Folding and dynamics of proteins studied by non-radiative energy transfer measurements; in Photophysical and Photochemical Tools in Polymer Science CWinnik, M.A., ed.) pp. 325-350, D. Reidel Publishing Comp., Dordrecht.
- 30. Harton, H.R. & Koshland, D.E. (1967) Environmentally sensitive groups attached to proteins. Methods Enzymol. 11, 857 870.
- 31. Forster, Y. & Hass, E. (1993) Preparation and characterization of three fluorescent labels for proteins, suitable for structural studies. Anal. Biochem. 209, 9-14.
- 32. Corric, J.E.T. (1994) Thiol-reactive fluorescent probes for protein labeling. J. Chem. Soc. Perkin Trans. I, 2975-2982.
- 33. Waggogner, A. (1995) Covalent labeling of protein and nucleic acid with fluorofores. Methods Enzymol. 246, 363-373.
- 34. Haugland, R.P. (1996) Handbook of Fluorescent Probes and Research Chemical. Molecular Probes, 6th edn.
- 35. Cantor, C.R. & Pechukas, P. (1971) Determination of distance distribution functions by singlet-singlet energy transfer. Proc. Natl. Acad. Sci. U.S.A. 68, 2099-2101.
- 36. Gryczynski, I., Wiczk, W., Johnson, M.L., Cheung, H.C., Wang, C. & Lakowicz, J.R. (1988) Resolution of the end-to-end distance distribution of flexible molecules using quenching-induced variations Forster distance for fluorescence energy transfer. Bio- phys. J. 54, 577-586.
- 37. Wiczk, W.t Eis, P.S., Fishman, M.N. .Johnson, M.L. & Lakowicz, J.R. (1991) Distance distributions recovered from steady-state fluorescence measurements on thirteen donor-acceptor pairs with different Forster distance. ,1. Fluorescence 1, 273-286.
- 38. Gryczynski, I., Wiczk, W., Johnson, M.L. & Lakowicz, J.R. (1988) End-to-end distance distributions of flexible molecules from steady state fluorescence energy transfer and quenching-induced changes in the Forster distance. Chem. Phys. Lett. 145. 439^446.
- 39. Wiczk, W., Gryczynski, I., Szmacinski, II., Johnson, M.L., Kruszyński, M. & Zboinska, J. (1988) Distribution of distances in thiopep- tides by fluorescence energy transfer and frequency-domain fluorometry. Biophys. Chem. 32, 43-49.
- 40. Szmacinski, H., Wiczk, W., Fishman, M.N., Eis, P.S., Lakowicz, J.R. & Johnson, M.L. (1996) Distance distributions from the lyrosyl to disulfide residues in oxytocin and [Arg8]- vasopressin measured using frequency-domain fluorescence resonance energy transfer. Eur. Biophys. J. 24, 185-194.
- 41. Eis, P.S. & Lakowicz, J.R. (1993) Time-resolved energy transfer measurements of donor-acceptor distance distribution and intramolecular flexibility of CCIIH zinc finger peptide. Biochemistry 32. 7981-7993.
- 42. Lakowicz, J.R., Gryczynski, I., Wiczk, W., Laczko, G., Prendergast, F.C. & Johnson, M.L. (1990) Conformational distributions of melittin in water-methanol mixtures from frequency-domain measurements of non-ra- diative energy transfer. Biophys. Chem. 36, 99-115.
- 43. Beals. J.M., Haas, E., Krausz, S. & Scheraga, H.A. (1991) Conformational studies of a pop- tide corresponding to a region of the C-termi- nus of ribonuclease A: Implication as a potential chain-folding initiation site. Biochemistry 30. 7680-7692.
- 44. Haas, E., Wilchek, M.f Katchalski-Katzir, E. & Steinberg, I.Z. (1975) Distribution of end- to-end distances of oligopeptides in solution as estimated by energy transfer. Proc. Natl. Acad. Sci. U.S.A. 72, 1807-1811.
- 45. Cheung, H.C., Gryczynski, I., Malak, H., Wiczk, W., Johnson, M.L. & Lakowicz, J.R. (1991) Conformational flexibility of the Cys 697-Cys 707 segment of myosin subfragment- l: Distance distribution by frequency-domain fluorometry. Biophys. Chem. 40, 1-17.
- 46. Amir, D. & Haas, E. (1986) Determination of intramolecular distance distribution in a globular protein by nonradiative excitation energy transfer measurements. Biopolymers 25, 235-240.
- 47. Gottfried, D.S. & Haas, E. (1992) Nonlocal interaction stabilize folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor. Biochemistry 31, 12353-12362.
- 48. Lakowicz, J.R.» Gryczynski, I., Cheung, II.C. & Wang, C. (1988) Distance distribution in native and random-coiled troponin J from frequency-domain measurements of fluorescence energy transfer. Biopolymers 27, 821- -830.
- 49. Cheung, H.C., Wang, C.f Gryczynski, I., Wiczk, W., Laczko, G., Johnson, M.L. & Lakowicz, J.R. (1991) Distance distributions and anisotropy decays of troponin C and its complex with troponin I. Biochemistry 30, 5238-5247.
- 50. Wu, P.G., James, E. & Brand, L. (1993) Compact thermally-denaturated state of a staphylococcal nuclease mutant from resonance energy transfer measurements. Biophys. Chem. 46, 123-133.
- 51. James, E., Wu, P.G., Stites, W. & Brand, L. (1992) Compact denaturated state of a staphylococcal nuclease mutant by guani- dinium as determined by resonance energy transfer. Biochemistry 31, 10217-10225.
- 52. McWherter, CA., Haas, E., Leed, A.R. & Scheraga, H.A. (1986) Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer. Biochemistry 25, 1951-1963.
- 53. Haas, E., McWherter, C.A. & Scheraga, H.A. (1988) Conformational unfolding in the N-ter- minal region of ribonuclease A detected by nonradiative energy transfer: Distribution of interresidue distance in the native, denaturated, and reduced-dcnaturated states. Biopolymers 27, 1-21.
- 54. Rice, K.G., Wu, P., Brand. L. & Lee, Y.C. (1991) Interterminal distance and flexibility of a triantennary glycopeptide as measured by resonance energy transfer. Biochemistry 30, 6646-6655.
- 55. Wu, P., Rice, K G., Brand. L. & Lee, Y.C. (1991) Differential flexibility in three branches of an N-linked triantennary glycopeptide. Proc. Natl. Acad. Sci. U.S.A. 88, 9355-9359.
- 56. Maliwal, B.P., Kusba, J., Wiczk, W., Johnson, M.L. & Lakowicz. J.R. (1993) End-to-end diffusion coefficients and distance distributions from fluorescence energy transfer measurements: Enhanced resolution by using multiple acceptors with different Forster distances. Biophys. Chem. 46, 273-281.
- 57. Lakowicz, J.R., Gryczynski, I., Kusba, J.f Wiczk. W., Szmacinski, H. & Johnson, M.L. (1994) Site-to-site diffusion in proteins as observed by energy transfer and frequency-domain fluorometry. Photochem. Photobiol. 59. 16-29.
- 58. Lakowicz, J.R., Kusba, J. & Wiczk, W. (1990) Influence of end-to-end diffusion on intramolecular energy transfer as observed by frequency-domain fluorometry. Biophys. Chem. 38, 99-109.
- 59. Dale, R.E. & Eisinger, J. (1974) Intramolecular distances determined by energy transfer. Dependence on orientational freedom of donor and acceptor. Biopolymers 13, 1573-1605.
- 60. Dale, R.E., Eisinger, J. & Blumberg, W.E. (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161-194.
- 61. Censullo, R., Martin, J.C. & Cheung, H.C. (1992) The use of isotropic orientation factor in fluorescence energy transfer (FRET) studies of the actin filament. J. Fluorescence 2, 141-155.
- 62. Haas, E. & Katchalski-Katzir, E. (1978) Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transition of mixed polarization. Biochemistry 17, 5064-5070.
- 63. Horrocks. W.DeW., Jr. (1993) Luminescence spectroscopy. Methods Enzymol. 226, 495- -538.
- 64. Lakowicz, J.R., Gryczynski, I., Wiczk, W., Laczko, G., Prendergast, F.C. & Johnson, M.L. (1990) Conformational distributions of melittin in water-methanol mixtures from frequency-domain measurements of non-radiative energy transfer. Biophys. Chem. 36. 99-115.
- 65. Guillard, R. & Englert, A. (1976) Interpretation of energy-transfer experiments by theoretical studies of model compounds using semiempirical potential functions. I. Three- linked aromatic peptide unit. Biopolymers 15, 1301-1314.
- 66. Leclerc, M„ Premilat, S. & Englert, A. (1978) Nonradiative energy transfer in oligopeptide chain generated by a Monte Carlo method including long-range interactions. Biopolymers 17, 2459-2473.
- 67. Ixiclerc, M., Premilat, S., Guillard, R., Renne- boog-Squilbin, C. & Englert, A. (1977) Interpretation of energy transfer experiments by theoretical studies of model compounds using semiempirical potential functions. II. Monte Carlo calculations on oligopeptides. Biopolymers 16, 531-544.
- 68. Steinberg, I.Z. (1968) Nonradiative energy transfer in systems in which rotatory Brownian motion is frozen. J. Chem. Phys. 48, 2411-2413.
- 69. Steinberg, I.Z, Haas, E. & Katchalski-Katzir. E. (1983) Long-range nonradiative transfer of electronic excitation energy; in Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology (Cundall, R.B. & Dale, R.B., eds.) vol. 69, pp. 411-450, Plenum Press, New York.
- 70. Wu, P. & Brand, L. (1992) Orientation factor in steady-state and time-resolved resonance energy transfer measurements. Biochemistry 31, 7939-7947.
- 71. Eis, P.S. & Millar, D P. (1993) Conformational distributions of a four-way DNA junction revealed by time-resolved fluorescence resonance energy transfer. Biochemistry 32, 13852-13860.
- 72. Lakowicz, J.R., Gryczynski, I., Wiczk, W., Kusba, J. & Johnson, M.L. (1991) Correction for incomplete labeling in distance distributions determined by frequency-domain fluorometry. Anal. Biochem. 195, 243-254.
- 73. Lakowicz, J.R., Kusba, J., Szmacinski, H., Gryczynski, I., Eis, P.S., Wiczk, W. & Johnson, M.L. (1991) Resolution of end-to-end diffusion coefficients and distance distributions of flexible molecules using fluorescent donor-acceptor and donor-quencher pairs. Biopolymers 31, 1363-1378.
- 74. Horrocks, W.DeW., Jr., Holmquist, B. & Vallee, B.L. (1975) Energy transfer between terbium (III) and cobalt (II) in thermolysin: A new class of metal-metal distance probes. Proc. Natl. Acad. Sci. U.S.A. 72, 4764-4768.
- 75. Matthews, B.W., Weaver, L.H. & Kester, W.R. (1974) The conformation of thermolysin. J. Biol. Chem. 249, 8030-8044.
- 76. Horrocks, W.DeW., Jr. & Tingey, J.M. (1988) Time-resolved europium (III) luminescence excitation spectroscopy: Characterization of calcium-binding sites of calmodulin. Biochemistry 27, 413-419.
- 77. Babu, Y.S., Bugg, C.E. & Cook, W.J. (1988) Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204, 191 -204.
- 78. Snider, A.P., Sudnick, D.R., Arkle, V.K. & Horrocks, W.DoW., Jr. (1981) Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermctal energy transfer distance measurements in calcium- binding proteins. 2. Thermolysin. Biochemistry 20, 3334-3339.
- 79. Rhee, M.-J., Sudnick, D.R., Arkle, V.K. & Horrocks, W.DeW., Jr. (1981) Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium- binding proteins. 1. Parvalbumin. Biochemistry 20, 3328-3334.
- 80. Rhee, M.-J., Horrocks, W.DeW., Jr. & Kosow, D.P. (1984) Laser-induced lanthanide luminescence as a probe of metal ion-binding sites of human Factor Xa. J. Biol. Chem. 259, 7404-7408.
- 81. McWherter, C.A., Haas, E., Leed, A.R. & Scheraga, H.A. (1986) Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer. Biochemistry 25, 1951-1963.
- 82. Borkakoti, N., Moss, D.S. & Palmer, R.A. (1982) Ribonuclease-A: Least-squares refinement of the structure at 1.45 A resolution. Acta Crystallogr., Sec. B: Struct. Crystallogr. Cryst. Chem. 38B, 2210-2217.
- 83. Wlodawer, A.. Walter, J., Huber, R. & Sjolin, L. (1984) Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J. Mol. Biol. 180. 301-329.
- 84. Kabsch, W., Mannherz, H.G.. Suck, D.f Pai. F.F. & Holmes, K.C. (1990) Atomic structure of the actin-DNase I complex. Nature 347, 37-44.
- 85. Miki. M., CDonoghue, S.I. & Dos Remedios, C.G. (1992) Structure of actin observed by fluorescence resonance energy transfer spectroscopy. J. Muscle Res. Cell Motil. 13, 132- -145.
- 86. O'Donoghue, S.I., Hambly, B.D. & Dos Remedios, C.G. (1992) Models of actin monomer and filament from fluorescence resonance energy transfer. Eur. J. Biochem. 205,591-601.
- 87. McLaughlin, P.J., Gooch, P.J., Mannherz, H.G. & Weeds, A.G. (1993) Structure of gel- solin segment-1-actin complex and the mechanism of filament severing. Nature 364, 685-692.
- 88. Schutt, C.E., Myslik, J.C., Rozycki. M.D., Goonesekere. N.C.W. & Lindberg, U. (1993) The structure of crystalline profilin-p-actin. Nature 365, 810-816.
- 89. Lorenz, M., Popp, D. & Holmes, K.C. (1993) Refinement of the F-actin model against X- ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234. 826-836.
- 90. Dos Remedios, C.G. & Moens, P.D.J. (1995) Actin and the actinomyosin interface. Bio- chim. Biophys. Acta 1228. 99-124.
- 91. Lauterwcin, J., Brown, L.R. & Wiirtrich. K. (1980) High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Bio- chim. Biophys. Acta 622, 219-230.
- 92. Bazzo, R., Tappin, M.J., Pastore, A., Harvey, T.S., Carver, J.A. & Campbell, D. (1988) The structure of melittin. A 1H-NMR study in methanol. Eur. J. Biochem. 173, 139-146.
- 93. Brown, L.R. & Wütrich, K. (1981) Melittin bounded to dodecylphosphatocholine micelles. 1H-NMR assigments and global conformational features. Biochim. Biophys. Acta 647, 95-111.
- 94. Lakowicz, J.R., Gryczynski, I., Laczko, G., Wiczk, W. & Johnson. M.L. (1994) Distribution of distances between tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phospholipids. Protein Sci. 3, 628-637.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-3f545506-2356-49c1-bdc8-6c3ebed0dede