Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 13 | 4 | 599-613
Tytuł artykułu

Regulation of human aldoketoreductase 1C3 [AKR1C3] gene expression in the adipose tissue

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aldoketoreductase 1C3 (AKR1C3) is a functional prostaglandin F synthase and a negative modulator of the availability of ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ). AKR1C3 expression is known to be associated with adiposity, one of the components of the metabolic syndrome. The aim of this study was to characterize the expression of AKR1C3 in the adipose tissue and adipocytes and to investigate its potential role in the metabolic syndrome. Using microarray analysis and realtime PCR, we studied the expression of AKR1C3 in adipose tissue samples from obese subjects with or without metabolic complications, during very low calorie diet-induced weight loss, and its expression in isolated human adipocytes of different sizes. The adipose tissue AKR1C3 expression levels were marginally lower in obese subjects with the metabolic syndrome compared with the levels in healthy obese subjects when analyzed using microarray (p = 0.078) and realtime PCR (p < 0.05), suggesting a secondary or compensatory effect. The adipose tissue mRNA levels of AKR1C3 were reduced during and after dietinduced weight-loss compared to the levels before the start of the diet (p < 0.001 at all time-points). The gene expression of AKR1C3 correlated with both adipose tissue mRNA levels and serum levels of leptin before the start of the diet (p < 0.05 and p < 0.01, respectively). Furthermore, large adipocytes displayed a higher expression of AKR1C3 than small adipocytes (1.5-fold, p < 0.01). In conclusion, adipose tissue AKR1C3 expression may be affected by metabolic disease, and its levels are significantly reduced in response to dietinduced weight loss and correlate with leptin levels.
Wydawca
-
Rocznik
Tom
13
Numer
4
Strony
599-613
Opis fizyczny
p.599-613,fig.,ref.
Twórcy
  • Sahlgrenska Academy at the University of Gothenburg, SE-413 45 Gothenburg, Sweden
autor
autor
autor
Bibliografia
  • 1. Goldstein, D.J. Beneficial health effects of modest weight loss. Int. J. Obes. Relat. Metab. Disord. 16 (1992) 397-415.
  • 2. Sjöström, L., Narbro, K., Sjöström, C.D., Karason, K., Larsson, B., Wedel, H., Lystig, T., Sullivan, M., Bouchard, C., Carlsson, B., Bengtsson, C., Dahlgren, S., Gummesson, A., Jacobson, P., Karlsson, J., Lindroos, A.K., Lönroth, H., Näslund, I., Olbers, T., Stenlöf, K., Torgerson, J., Ågren, G. and Carlsson, L.M. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357 (2007) 741-752.
  • 3. Rajala, M.W. and Scherer, P.E. Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144 (2003) 3765-3773.
  • 4. Björntorp, P. Metabolic implications of body fat distribution. Diabetes Care 14 (1991) 1132-1143.
  • 5. Despres, J.P., Moorjani, S., Lupien, P.J., Tremblay, A., Nadeau, A. and Bouchard, C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 10 (1990) 497-511.
  • 6. Kissebah, A.H. Intra-abdominal fat: is it a major factor in developing diabetes and coronary artery disease? Diabetes Res. Clin. Pract. 30 Suppl (1996) 25-30.
  • 7. Pouliot, M.C., Despres, J.P., Nadeau, A., Moorjani, S., Prud'Homme, D., Lupien, P.J., Tremblay, A. and Bouchard, C. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 41 (1992) 826-834.
  • 8. Montague, C.T. and O'Rahilly, S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes 49 (2000) 883-888.
  • 9. Gabrielsson, B.G., Johansson, J.M., Jennische, E., Jernås, M., Itoh, Y., Peltonen, M., Olbers, T., Lönn, L., Lönroth, H., Sjöström, L., Carlsson, B., Carlsson, L.M. and Lönn, M. Depot-specific expression of fibroblast growth factors in human adipose tissue. Obes. Res. 10 (2002) 608-616.
  • 10. Gabrielsson, B.G., Johansson, J.M., Lönn, M., Jernås, M., Olbers, T., Peltonen, M., Larsson, I., Lönn, L., Sjöström, L., Carlsson, B. and Carlsson, L.M. High expression of complement components in omental adipose tissue in obese men. Obes. Res. 11 (2003) 699-708.
  • 11. Vidal, H. Gene expression in visceral and subcutaneous adipose tissues. Ann. Med. 33 (2001) 547-555.
  • 12. Blouin, K., Richard, C., Belanger, C., Dupont, P., Daris, M., Laberge, P., Luu-The, V. and Tchernof, A. Local androgen inactivation in abdominal visceral adipose tissue. J. Clin. Endocrinol. Metab. 88 (2003) 5944-5950.
  • 13. Blouin, K., Richard, C., Brochu, G., Hould, F.S., Lebel, S., Marceau, S., Biron, S., Luu-The, V. and Tchernof, A. Androgen inactivation and steroidconverting enzyme expression in abdominal adipose tissue in men. J. Endocrinol. 191 (2006) 637-649.
  • 14. Quinkler, M., Bujalska, I.J., Tomlinson, J.W., Smith, D.M. and Stewart, P.M. Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene 380 (2006) 137-143.
  • 15. Quinkler, M., Sinha, B., Tomlinson, J.W., Bujalska, I.J., Stewart, P.M. and Arlt, W. Androgen generation in adipose tissue in women with simple obesity--a site-specific role for 17beta-hydroxysteroid dehydrogenase type 5. J. Endocrinol. 183 (2004) 331-342.
  • 16. Lin, H.K., Jez, J.M., Schlegel, B.P., Peehl, D.M., Pachter, J.A. and Penning, T.M. Expression and characterization of recombinant type 2 3 alphahydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3 alpha/17 beta-HSD activity and cellular distribution. Mol. Endocrinol. 11 (1997) 1971-1984.
  • 17. Penning, T.M., Burczynski, M.E., Jez, J.M., Lin, H.K., Ma, H., Moore, M., Ratnam, K. and Palackal, N. Structure-function aspects and inhibitor design of type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3). Mol. Cell Endocrinol. 171 (2001) 137-149.
  • 18. Desmond, J.C., Mountford, J.C., Drayson, M.T., Walker, E.A., Hewison, M., Ride, J.P., Luong, Q.T., Hayden, R.E., Vanin, E.F. and Bunce, C.M. The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer Res. 63 (2003) 505-512.
  • 19. Spiegelman, B.M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47 (1998) 507-514.
  • 20. Palming, J., Sjöholm, K., Jernås, M., Lystig, T.C., Gummesson, A., Romeo, S., Lönn, L., Lönn, M., Carlsson, B. and Carlsson, L.M. The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J. Clin. Endocrinol. Metab. 92 (2007) 2346- 2352.
  • 21. Gummesson, A., Jernås, M., Svensson, P.A., Larsson, I., Glad, C.A., Schele, E., Gripeteg, L., Sjöholm, K., Lystig, T.C., Sjöström, L., Carlsson, B., Fagerberg, B. and Carlsson, L.M. Relations of Adipose Tissue CIDEA Gene Expression to Basal Metabolic Rate, Energy Restriction, and Obesity: Population-Based and Dietary Intervention Studies. J. Clin. Endocrinol. Metab. 92 (2007) 4759-4765.
  • 22. Behre, C.J., Gummesson, A., Jernås, M., Lystig, T.C., Fagerberg, B., Carlsson, B. and Carlsson, L.M. Dissociation between adipose tissue expression and serum levels of adiponectin during and after diet-induced weight loss in obese subjects with and without the metabolic syndrome. Metabolism 56 (2007) 1022-1028.
  • 23. WHO 1999 Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. In. Geneva: World Health Organization, Department of noncommunicable disease surveillance
  • 24. Torgerson, J.S., Lindroos, A.K., Sjöström, C.D., Olsson, R., Lissner, L. and Sjöström, L. Are elevated aminotransferases and decreased bilirubin additional characteristics of the metabolic syndrome? Obes. Res. 5 (1997) 105-114.
  • 25. Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162 (1987) 156-159.
  • 26. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J. and Vingron, M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29 (2001) 365-371.
  • 27. Karason, K., Jernås, M., Hägg, D.A. and Svensson, P.A. Evaluation of CXCL9 and CXCL10 as circulating biomarkers of human cardiac allograft rejection. BMC Cardiovasc. Disord. 6 (2006) 29
  • 28. Jernås, M., Palming, J., Sjöholm, K., Jennische, E., Svensson, P.A., Gabrielsson, B.G., Levin, M., Sjögren, A., Rudemo, M., Lystig, T.C., Carlsson, B., Carlsson, L.M. and Lönn, M. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. Faseb J. 20 (2006) 1540-1542.
  • 29. Gabrielsson, B.G., Olofsson, L.E., Sjögren, A., Jernås, M., Elander, A., Lönn, M., Rudemo, M. and Carlsson, L.M. Evaluation of reference genes for studies of gene expression in human adipose tissue. Obes. Res. 13 (2005) 649-652.
  • 30. Weyer, C., Foley, J.E., Bogardus, C., Tataranni, P.A. and Pratley, R.E. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43 (2000) 1498-1506.
  • 31. Wake, D.J., Strand, M., Rask, E., Westerbacka, J., Livingstone, D.E., Soderberg, S., Andrew, R., Yki-Jarvinen, H., Olsson, T. and Walker, B.R. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. Clin. Endocrinol. (Oxf) 66 (2007) 440-446.
  • 32. Reginato, M.J., Krakow, S.L., Bailey, S.T. and Lazar, M.A. Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 273 (1998) 1855- 1858.
  • 33. Barrett-Connor, E. Lower endogenous androgen levels and dyslipidemia in men with non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 117 (1992) 807-811.
  • 34. Haffner, S.M., Valdez, R.A., Stern, M.P. and Katz, M.S. Obesity, body fat distribution and sex hormones in men. Int. J. Obes. Relat. Metab. Disord. 17 (1993) 643-649.
  • 35. Day, C. Metabolic syndrome, or What you will: definitions and epidemiology. Diab. Vasc. Dis. Res. 4 (2007) 32-38.
  • 36. Peeraully, M.R., Sievert, H., Bullo, M., Wang, B. and Trayhurn, P. Prostaglandin D2 and J2-series (PGJ2, Delta12-PGJ2) prostaglandins stimulate IL-6 and MCP-1, but inhibit leptin, expression and secretion by 3T3-L1 adipocytes. Pflugers Arch. 453 (2006) 177-187.
  • 37. Lundgren, M., Svensson, M., Lindmark, S., Renström, F., Ruge, T. and Eriksson, J.W. Fat cell enlargement is an independent marker of insulin resistance and 'hyperleptinaemia'. Diabetologia 50 (2007) 625-633.
  • 38. McLaughlin, T., Sherman, A., Tsao, P., Gonzalez, O., Yee, G., Lamendola, C., Reaven, G.M. and Cushman, S.W. Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 50 (2007) 1707-1715.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-3e4b8393-5804-42be-aa4b-49a82ed66a94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.