Warianty tytułu
Języki publikacji
Abstrakty
The 2',3'-cyclic phosphate termini are produced, as either intermediates or final products, during RNA cleavage by many different endoribonucleases. Likewise, ribozymes such as hammerheads, hairpins, or the hepatitis delta ribozyme, generate 2',3'-cyclic phosphate ends. Discovery of the RNA 3'-terminal phosphate cyclase has indicated that cyclic phosphate termini in RNA can also be produced by an entirely different mechanism. The RNA 3'-phosphate cyclase converts the 3'-terminal phosphate in RNA into the 2',3'-cyclic phosphodiester in the ATP-dependent reaction which involves formation of the covalent cyclase-AMP and the RNA-Ni3'pp5'A intermediates. The findings that several eukaryotic and prokaryotic RNA ligases require the 2',3'-cyclic phosphate for the ligation of RNA molecules raised a possibility that the RNA 3'-phosphate cyclase may have an anabolic function in RNA metabolism by generating terminal cyclic groups required for ligation. Recent cloning of a cDNA encoding the human cyclase indicated that genes encoding cyclase-like proteins are conserved among Eucarya, Bacteria, and Archaea. The protein encoded by the Escherichia coli gene was overexpressed and shown to have the RNA 3'-phosphate cyclase activity. This article reviews properties of the human and bacterial cyclases, their mechanism of action and substrate specificity. Possible biological functions of the enzymes are also discussed.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.895-906,fig.
Twórcy
autor
- Friedrich Miescher-Institut, 4002 Basel, Switzerland
autor
autor
autor
Bibliografia
- Am, E.A. & Abelson, J.N. (1996) The 2'-5' RNA li- gase of Escherichia coli. Purification, cloning and genomic disruption. J. Biol. Chem. 269, 31145-31153.
- Filipowicz, W. & Shatkin, A.J. (1983) Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell 32, 547-557.
- Filipowicz, W. à Gross, H.J. (1984) RNA ligation in eukaryotes. Trends Biochem. Sci. 9,68-71.
- Filipowicz, W., Konarska, M., Gross, H.J. & Shatkin, A.J. (1983) RNA 3'-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. Nucleic Acids Res. 11, 1405-1418.
- Filipowicz, W., Strugała, K., Konarska, M. & Shatkin, A.J. (1985) Cyclization of RNA 3'- terminal phosphate by cyclase from HeLa cells proceeds via formation of N(3 )pp(° )A activated intermediate. Proc. Natl. Acad. Sci. U.S.A. 82. 1316-1320.
- Filipowicz, W. & Vicente, O. (1990) RNA 3'-term- inal phosphate cyclase from HeLa cells. Methods Enzymol 181. 499-510.
- Furneaux, H., Pick, L. & Hurwitz, J. (1983) Isolation and characterization of RNA ligase from wheat germ. Proc. Natl Acad. Sci. U.S.A. 80. 3933-3937.
- Genschik, P., Drabikowski, K. & Filipowicz, W. (1998) Characterization of the Escherichia coli RNA 3'-terminal phosphate cyclase and its a54-regulated operon. J. Biol Chem. 273, 25516-25526.
- Genschik, P., Billy, E., Swianiewicz, M. & Filipowicz, W. (1997) The human RNA 3'-term- inal phosphate cyclase is a member of a new family of proteins conserved in Eucarya, Bacteria and Archaea. EMBOJ. 16,2955-2967.
- Greer, C.L., Peebles, C.L., Gegenheimer, P. & Abelson, J. (1983a) Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell 32, 537-546.
- Greer, C.L., Javor, B. & Abelson, J. (1983b) RNA ligase in Bacteria: Formation of a 2',5' linkage by an E. coli extract. Cell 33, 899-906.
- Gulati, P., Xu, D. & Kaplan, H.B. (1995) Identification of the minimum regulatory region of a Myxococcus xanthus A-signal-dependent developmental gene. J. Bacterial 177,4645-4651.
- Keseler, I.M. & Kaiser, D. (1995) An early A- signal-dependent gene in Myxococcus xanthus has a (f -like promoter. J. BacterioL 177, 4638-4644.
- Keseler, I.M. & Kaiser, D. (1997) a54, a vital protein for Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 94, 1979-1984.
- Konarska, M., Filipowicz, W., Domdey, H. & Gross, H.J. (1981) Formation of a 2'-phospho- monoester, 3',5'-phosphodiester linkage by a novel RNA ligase in wheat germ. Nature 293. 112-116.
- Konarska, M., Filipowicz, W. & Gross, H.J. (1982) RNA ligation via 2'-phosphomonoester, 3'-, 5'- phosphodiester linkage: Requirement of 2', 3'- cyclic phosphate termini and involvement of a 5'-hydroxyl polynucleotide kinase. Proc. Natl Acad. Sci U.S.A. 79, 1474- 147ft.
- Lund, E. & Dahlberg, J.E. (1992) Cyclic 2',3'-pho- sphates and nontemplated nucleotides at the 3' end of spliceosomal U6 small nuclear RNA's. Science 255, 327-330.
- Merrick, M J. (1993) In a class of its own — the RNA polymerase sigma factor o°4 (o^). Mol Microbiol 10, 903-909.
- Phizicky, E.M. & Greer, C. (1993) Pre-tRNA splicing: Variation on a theme or exception to the rule? Trends Biochem. Sci. 18, 31-34.
- Reinberg, D., Arenas, J. & Hurwitz, J. (1985) The enzymatic conversion of 3'-phosphate terminated RNA chains to 2',3'-cyclic phosphate derivatives. J. Biol Chem. 260, 6088-6097.
- Richards, G.M. & Laskowski, M., Sr. (1969) Negative charge at the 3' terminus of oligonucleotides and resistance to venom exonuclease. Biochemistry 8, 1786-1795.
- Schwartz, R.C., Greer, C.L., Gegenheimer, P. & Abelson, J. (1983) Enzymatic mechanism of an RNA ligase from wheat germ. J. Biol Chem. 258, 8374-8383.
- Sekiguchi, J. & Shuman, S. (1997) Site-specific ri- bonuclease activity of eukaryotic topoi- somerase I. Mol CeU 1, 89-97.
- Shingler, V. (1956) Signal sensing by ^-dependent regulators: Derepression as a control mechanism. Mol Microbiol. 19, 409-416.
- Shuman, S. & Schwer, B. (1995) RNA capping enzyme and DNA ligase: A superfamily of cova- lent nucleotidyl transferases. Mol Microbiol 17, 405-410.
- Sidrauski, C. & Walter, P. (1997) The transmembrane kinase Irelp is a site-specific endonucle- ase that initiates mRNA splicing in the unfolded protein response. Cell 90,1031-1039.
- Symons, R.H. (1992) Small catalytic RNAs. Annu. Rev. Biochem. 61, 641-671.
- Vicente, O. & Filipowicz, W. (1988) Purification of RNA 3'-terminal phosphate cyclase from HeLa cells. Eur. J. Biochem. 176, 431-439.
- Westaway, S.K. & Abelson, J. (1995) Splicing of tRNA precursors; in tRNA: Structure, Biosynthesis and Function (Soell, D. & RajBhandary, U., eds) pp. 79-92, American Society for Microbiology, Washington, D.C.
- Wingrove, J.A. & Gober, J.W. (1994) A a54 transcriptional activator also functions as a pole- specific repressor in Caulobacter. Genes Dev. 8, 1839-1852.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-3d7f533a-c3e6-447d-bc53-40da2829feee