Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 56 | 3 | 471-479
Tytuł artykułu

Microbial parameters of soils contaminated with heavy metals: assessment for ecotoxicological monitoring

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to test the suitability of microbiological methods for the ecotoxicological evaluation on the example of soils of two sites (I and II) (more and less contaminated and situated in Saxony-Anhalt, Germany). Contents of Zn, Pb, Cd, Ni, Cr, and Cu in soil ranged 787–210, 210–110, 8–1, 49–12, 130–17, and 161–70 mg kg⁻¹, respectively being significantly higher in site I. The sites differ also in respect to pH (5.2–7.5), Corg (5.66–8.27%) and type of soil. The parameters tested were following: substrate-induced respiration (SIR), activity of luminous bacteria, substrate utilization patterns on BIOLOG ECO-and GN-plates, and phospholipid fatty acid (PLFA) profiles. The respiratory coefficient QR, peak respiratory maximum and BIOLOG ECO-plates were suitable for an ecotoxicological assessment of contaminated soils. QR values (> 0.3) and peak maximum values (> 40 h) indicated stress of soil microorganisms at the most heavy metal contaminated site (site I). PLFA analysis can be used to detect various environmental stresses in the soil. The trans/cis ratio of monosaturated fatty acids (> 0.1) and the fungal/bacterial biomass ratio were able to distinguish the stress conditions in soils connected with heavy metal contamination. With increasing heavy metal content in soils the PLFA pattern are changed directionally.
Wydawca
-
Rocznik
Tom
56
Numer
3
Strony
471-479
Opis fizyczny
p.471-479,fig.,ref.
Twórcy
autor
  • Martin-Luther-University Halle-Wittenberg, Weidenplan 14, 06108 Halle/Saale, Germany
autor
Bibliografia
  • Abaye D.A., Lawlor K., Hirsch P.R., Brookes P.C. 2005 – Changes in the microbial community of an arable soil caused by long-term metal contamination – Europ. J. Soil Sci. 56: 93–102.
  • Anderson J.P.E., Domsch K.H. 1978 – A physiological method for the quantitative measurement of microbial biomass in soils – Soil Biol. Biochem. 10: 215–221.
  • Anderson T.H., Domsch K.H. 1993 – The metabolic quotient for CO₂ (qCO₂) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils – Soil Biol. Biochem. 25: 393–395.
  • Anderson T.H., Weigel H.J. 2003 – On the current debate about soil biodiversity – Landbauforschung Völkenrode, 53: 223–233.
  • Andrén O., Baritz R., Brandao C., Breure T., Feix I., Franko U. 2004 – Working group on organic matter and biodiversity. Task Group 3 on Soil Biodiversity – Final report May 2004. Bruxelles, Belgium: Commission européenne.
  • Bååth E.T., Anderson H. 2003 – Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques – Soil Biol. Biochem. 35: 955–963.
  • Bradley K., Hancock J.E., Giardina C.P., Pregnitzer K.S. 2007 – Soil microbial community responses to altered lignin biosynthesis in Populus tremuloides vary among three distinct soils – Plant Soil, 294: 185–201.
  • Brookes P.C. 2003 – Microbial parameters as indicators of toxic effects of heavy metals on the soil ecosystem – (In: Bioavailability, toxicity and risk relationships in ecosystems, Eds. R. Naida, V.V.S.R. Gupta, S. Roger) – Science Publishers, Enfield, USA, pp. 85–108.
  • BundesBodenschutz und Altlastenverodnung 1999 – Gesetz vom 12.07.1999, Germany – Bundesgesetzblatt 1999 Teil I Nr. 36: 30 pp.
  • Campbell C.D., van Gelder J., Davidson M.S., Cameron C.M. 1995 – Use of sole carbon source utilisation pattern to detect changes in soil microbial communities affected by Cu, Ni and Zn – (In: Internat. Conf. on Heavy metals in the Environment, Eds. R.D. Wilken., U. Forstner, A. Knochel) – CEP Consultants, Edinburgh, pp. 447–450.
  • Classen A.T., Boyle S.A., Haskins K.E., Overby S.T., Hart S.C. 2003 – Community level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils – FEMS Microbiol. Ecol. 44: 319–328.
  • Degens B.P., Schipper L.A., Sparling G.P. 2001 – Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? – Soil Biol. Biochem. 33: 1143–1153.
  • FAO-Unesco 2006 – World reference base for soil resources. A framework for international classification, correlation and communication – World Soil Res. Rep. 103: 128 pp.
  • Frostegård Ă., Tunlid A., Bååth E. 1993 - Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals – Appl. Environ. Microbiol. 59: 3605–3617.
  • Frostegård Ă., Tunlid A., Bååth E. 1996 – Chances in microbial community structure during long-term incubation in two soils experimentally contaminated with metals – Soil Biol. Biochem. 28: 55–63.
  • Garland J.L., Mills A.L. 1991 – Classification and characterization of heterotrophic microbial communities on the basis of a patterns of community level sole-carbon-source utilization – Appl. Environ. Microbiol. 57: 2351–2359.
  • Heinemeyer O., Insam H., Kaiser H., Walenzik G.1989 – Soil microbial biomass and respiration measurements: an automated technique based on infrared gas analysis – Plant Soil, 116: 191–195.
  • Haack S.K., Garchow H., King M.J., Forney L.J. 1995 – Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns – Appl. Environ. Microbiol. 60: 1458–1468.
  • Hofman J., Svihalek J., Holoubek I. 2004 – Evaluation of functional diversity of soil microbial communities-a case study – Plant, Soil Environ. 50: 141–148.
  • Kandeler E., Tscherko D., Wessolek G. 1998 – Reaktion von Mikroorganismen auf Bodenkontaminationen – TU Berlin. Bodenökologie und Bodengenese, 26: 100–107.
  • Kandeler E., Tscherko D., Bruce K.D., Stemmer M., Hobbs P.J., Bardgett R.D., Amelung W. 2000 – Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil - Biol. Fertil. Soils, 32: 390–400.
  • Kaur Amrit, Chaudhary A., Kaur Amarjeet, Choudhary R., Kaushik R. 2005 – Phospholipid fatty acid – A bioindicator of environment monitoring and assessment in soil ecosystem – Current Science, 89: 1103–1112.
  • Kelly J.J., Häggblom M.M., Tate R.L. III. 2003 – Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles – Biol. Fertil. Soils 38: 65–71.
  • Mhatre G.N., Pankhurst C.E. 1997 – Bioindicators to detect contamination of soils with special reference to heavy metals (In: Biological indicators of soil health, Eds. C. E. Pankhurst, B.M. Doube, V.V.S.R. Gupta) – CAB International, Wallingford, Australia, pp. 349–369.
  • Palmborg C. 1997 – The relationships of soil microbial activity and biomass to the chemical composition of mor – Doctoral thesis Swedish Univ. Agricultural Sci. Umeå (Sweden).
  • Palmborg C., Nordgren A. 1993 – MATS Guideline Test 16: soil respiration curves, a method to test the abundance, activity and vitality of the microflora in forest soils (In: MATS Guidelines: Soil biological variables in environmental hazard assessment, Ed. L. Torstensen) – Swedish Environmental Protection Agency.
  • Pankhurst C.E. 1997 – Biodiversity of soil organisms as an indicator of soil health, Eds. C.E. Pankhurst, B.M. Doube, V.V.S.R. Gupta) – CAB International, Wallingford, Australia, pp. 297–324.
  • Posthuma L., Suter II G.W., Traas T.P. 2001 – Species sensitivity distribution in ecotoxicology – CRC/Lewis Publishers, Boca Rota, USA.
  • Schinner F., Sonnleitner R. 1997 – Bodenökologie: Mikrobiologie und Bodenenzymatik, Teil IV: Anorganische Schadstoffe – Springer–Verlag, Berlin, Germany.
  • Tischer S. 2005 – Microbial biomass and enzyme activities on soil monitoring sites – Archives Agron. Soil Sci. 51: 673–685.
  • Widmer F., Fließbach A., Laczko E. 2001 – Assessing biological characteristics – Soil Biol. Biochem. 33: 1029–1036.
  • Winkel B., Wilke B.M. 2002 – V. Bodenmikroflora (In: Ökotoxikologische Testbatterien, Eds: K. Hund-Rinke, W. Kördel, S. Heiden, R. Erb) – Initiativen zum Umweltschutz 45, pp. 158–185.
  • Yao H., Huang C., He Z. 2002 – Application of Biolog sole carbon source utilization tests in Chinese red soils – 17th WCSS, 14–22 August 2002, Thailand, pp. 710–1–710–9.
  • Zak J.C., Willig M.R., Moorhead D.L., Wildman H.G. 1994 – Functional diversity of microbial communities: a quantitative approach – Soil Biol. Biochem. 26: 1101–1108.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-3adc33cd-90f6-4a90-9ded-1d97f46ddd42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.