Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 62 | 06 | 690-695
Tytuł artykułu

Wykorzystanie modelu mysich mioblastow linii C2C12 w badaniu mechanizmow insulinoopornosci w miesniach szkieletowych

Warianty tytułu
EN
Mouse C2C12 myoblasts exposed to high glucose and high insulin as a cellular model of insuline resistance in skeletal muscles
Języki publikacji
PL
Abstrakty
EN
The aim of the present study was to examine the effect of high glucose alone and in combination with high insulin on insulin-stimulated protein synthesis and the activation of insulin signaling pathways in mouse C2C12 myogenic cells. The experiments were performed on mouse C2C12 myoblasts subjected to differentiation under normal glucose (5 mmol/l), high glucose alone (15 mmol/l), or in combination with high insulin (50 nmol/l). Six-day differentiation under high glucose alone or in combination with high insulin resulted in insulin resistance, manifested by the abolition of the stimulatory effect on protein synthesis. High glucose concentration in the culture medium did not affect the protein kinase B (PKB) cellular content in C2C12 myogenic cells, whereas in cells preincubated with a combination of high glucose and high insulin a slight but significant increase (of 19%) in PKB protein content was determined. Insulin caused the activation of protein kinase B (PKB) in control C2C12 myogenic cells. Pretreatment with high glucose did not affect PKB phosphorylation whereas in cells differentiated under high glucose and high insulin PKB activation by insulin was markedly attenuated as compared with the control (differentiation under normal glucose). Neither the p70S6k protein content nor the pattern of insulin-mediated kinase activation was affected by pretreatment with high glucose, however high glucose and high insulin in combination caused an impairment in the p70S6k phosphorylation when compared to the control. High glucose exerted no significant changes in MAP kinase protein content, however concomitant treatment with high glucose and high insulin resulted in the decrease in p42MAPK and p44MAPK proteins (by 20%). During the whole period of observation, p42MAPK exhibited basal phosphorylation that was not modified in the presence of insulin. However, the phosphorylation of p42MAPK was profoundly impaired in cells preincubated with high glucose alone or in combination with high insulin. In conclusion: 1) high glucose abolishes the stimulatory action of insulin on protein synthesis without changes in PKB and p70S6k activation; 2) high glucose and high insulin in combination abolish the stimulatory effect of insulin dependent on PKB- and p70S6k; 3) the stimulatory action of insulin on protein synthesis in C2C12 myogenic cells depends on basal phosphorylation of p42MAPK.
Wydawca
-
Rocznik
Tom
62
Numer
06
Strony
690-695
Opis fizyczny
s.690-695,rys.,bibliogr.
Twórcy
  • Szkola Glowna Gospodarstwa Wiejskiego, ul.Nowoursynowska 159, 02-776 Warszawa
autor
Bibliografia
  • 1.Alessi D. R., Andjelkovich M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A.: Mechanism of activation of protein kinase B by insulin and IGF-I. EMBO J. 1996, 15, 6541-6551.
  • 2.Blenis J.: Signal transduction via MAP kinases: Proceed at your own RSK. Proc. Natl. Acad. Sci. USA 1993, 90, 5889-5892.
  • 3.Buren J., Liu H.-X., Lauritz J., Eriksson J. W.: High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitization in primary cultured rat adipocites: possible implications for insulin resistance in type 2 diabetes. Eur. J. Endocrinol. 2003, 148, 157-167.
  • 4.Cefalu F. T.: Insulin resistance: cellular and clinical concepts. Exp. Biol. Med. 2001, 226, 13-26.
  • 5.Ceriello A.: New insights on oxidative stress and diabetic complications may lead to a „casual antioxidant therapy. Diabetes Care 2003, 26, 1589-1596.
  • 6.Dardevet D., Sornet C., Grizard J.: Glucocorticoid-induced insulin resistance of protein synthesis is independent of the rapamycin-sensitive pathways in rat skeletal muscle. J. Endocrinol. 1999, 162, 77-85.
  • 7.De Alvaro C., Teruel T., Hernandez R., Lorenzo M.: Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a MAPK-dependent manner. J. Biol. Chem. 2004, 279, 17170-17178.
  • 8.Grzelkowska K., Balage M., Dardevet D., Grizard J.: Altered insulin and IGF-I signaling in skeletal muscle of streptozotocin-diabetic rats. Proceedings of Keystone Symposium: Diabetes Mellitus: Molecular mechanisms, genetics and prospects for new therapy. Taos, USA 2000.
  • 9.Grzelkowska K., Dardevet D., Balage M., Grizard J.: Involvement of rapamycin-sensitive pathway in the insulin regulation of muscle protein synthesis in streptozotocin-diabetic rats. J. Endocrinol. 1999, 160, 137-145.
  • 10.Gual P., Gremeaux T., Gonzalez T., Le Marchand-Brustel Y., Tanti J. F.: MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and 632. Diabetologia 2003, 46, 1532-1542.
  • 11.Houdali B., Nguyen V., Ammon H. P., Haap M., Schechinger W., Machic M., Rett K., Haring H. U., Schleicher E. D.: Prolonged glucose infusion into conscious rats inhibits early steps in insulin signaling and induces translocation of GLUT4 and protein kinase C in skeletal muscle. Diabetologia 2002, 45, 356-368.
  • 12.Huang C., Somwar R., Patel N., Niu W., Torok D., Klip A.: Sustained exposure of L6 myotubes to high glucose and insulin decreased insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 2002, 51, 2090-2098.
  • 13.Hsu Y.-M., Chiu C.-T., Wang C.-C., Chien C.-S., Luo S.-F., Hsiao L.-D., Liang K.-Y., Yang C.-M.: Tumour necrosis factor-a enhance bradykinin- -induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells. Cell Signal. 2001, 13, 633-643.
  • 14.Kanoh Y., Bandyopadhyay G., Sajan M. P., Standaert M. L., Farese R. V.: Risiglitazone, insulin treatment, and fasting correct defective activation of protein kinase C-zeta/lambda by insulin in vastus lateralis muscles and adipocytes of diabetic rats. Endocrinology 2001, 142, 1595-1605.
  • 15.Kraemer F. B., Takeda D., Natu V., Sztalryd C.: Insulin regulates lipoprotein lipase activity in rat adipose cells via wortmannin and rapamycin-sensitive pathways. Metabolism 1998, 47, 555-559.
  • 16.Naito Z., Takashi E., Xu G., Ishiwata T., Teduka K., Yokoyama M., Yamada N., Sugisaki Y., Asano G.: Different influences of hyperglycemic duration on phosphorylated extracellular signal-regulated kinase ½ in rat heart. Exp. Mol. Pathol. 2003, 74, 23-32.
  • 17.Nolte L. A., Hansen P. A., Chen M. M., Schluter J. M., Gulve E. A., Holloszy J. O.: Short-term exposure to tumor necrosis factor-a does not affect insulin-stimulated glucose uptake in skeletal muscle. Diabetes 1998, 47, 721- -726.
  • 18.Oku A., Nawamo M., Ueta K., Fujita T., Umebayashi I., Arakawa K., Kano- -Ishihara T., Saito A., Anai M., Funaki M., Kikuchi M., Oka Y., Asano T.: Inhibitory effect of hyperglycemia on insulin-induced Akt/protein kinase B activation in skeletal muscle. Am. J. Physiol. 2001, 280, E816-824.
  • 19.Perseghin G., Lattuada G., Danna M., Sereni L. P., Maffi P., De Cobelli P., Battezzati A., Secchi A., Del Maschio A., Luzi L.: Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type I diabetes. Am. J. Physiol. 2003, 285, E1174-1181.
  • 20.Pirola L., Bonnafous N., Johnston A. M., Chaussade C., Portis F., Vanobberghen E.: Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributed to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J. Biol. Chem. 2003, 278, 15641-15651.
  • 21.Qiao L. Y., Goldberg J. L., Russel I. C., Sun X. J.: Identification of enhanced serine kinase activity in insulin resistance. J. Biol. Chem. 1999, 274, 10625- -10632.
  • 22.Rojas F. A., Hirata A. E., Saad M. J.: Regulation of IRS-2 tyrosine phosphorylation in fasting and diabetes. Mol. Cell. Endocrinol. 2001, 183, 63-69.
  • 23.Valverde A. M., Lorenzo M., Navarro P., Mur C., Benito M.: Okadaic acid inhibits insulin-induced glukose transport in fetal brown adipocytes in an Akt-independent and protein kinase C-dependent manner. FEBS Lett. 2000, 472, 153-158.
  • 24.Wartmann M., Turowski P., Saltiel A. R., Hynes N. E.: Negative modulation of membrane localization of the Raf-1 protein kinase by hyperphosphorylation. J. Biol. Chem. 1997, 272, 915-3923.
  • 25.White M. F., Kahn C. H.: The insulin signaling system. J. Biol. Chem. 1994, 269, 1-4.
  • 26.Wilkes J. J., Bonen A.: Reduced insulin-stimulated glucose transport in denervated muscle is associated with impaired Akt-a activation. Am. J. Physiol. 2000, 279, E912-E919.
  • 27.Wojtaszewski J. F. P., Hansen B. F., Gade J., Kiens B., Markuns J. F., Goodyear L. J., Richter E. A.: Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 2000, 49, 325-331.
  • 28.Zick Y.: Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends. Cell. Biol. 2001, 11, 437-441.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-39a911b4-2d7e-40f9-9da1-e04cc1515a1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.