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We characterised early circulatory and respiratory responses to lipopolysaccharide
from E. coli (LPS, serotype O127:B8) in the isolated, ventilated and perfused rat lung
preparation. Lungs were isolated from anaesthetised Wistar rats and perfused with
full blood, platelet rich plasma (PRP), platelet poor plasma (PPP) or Krebs-Henseleit
solution iK‘H’)."LPS (300 pg/ml) injected into the blood-perfused lung induced
a characteristic biphasic response consisting of an immediate, transient decrease
in respiratory tidal volume and an increase in pulmonary perfusion pressures
followed by a delayed decrease in respiratory tidal volume. An immediate
respiratory/circulatory response to LPS was of considerable magnitude only in full
blood-perfused lung whereas the delayed response was fully expressed irrespective
whether blood, PRP, PPP or KH was used for the lung perfusion. Immediate
respiratory/circulatory response was inhibited by WEB 2170 (100 pM), a PAF
receptor antagonist, and by camonagrel (300 uM), a TXA, synthase inhibitor, but
not by MK 571 (100 puM), a cysteinyl leukotriene receptor antagonist. Delayed
respiratory response was inhibited by camonagrel only. In summary, we
demonstrated that the immediate coupled respiratory/circulatory response is
mediated by blood cell-derived PAF and TXA, whereas the delayed uncouplec
respiratory response is mediated by lung parenchyma-derived TXA,.

Key words: lipopolysaccharide, isolated lung, PAF, TXA,, pulmonary vasoconstriction,
bronchoconstriction

INTRODUCTION

Despite many years of research, early circulatory and respiratory lung
response to lipopolysaccharide (LPS) from E. coli is not as yet fully

understood.
In pigs intravenous infusion of LPS induces an immediate, transient

increase in pulmonary artery pressure and a parallel increase in airway
resistance (1). Simultaneous occurrence of airway and vascular responses to
LPS which occurs not only in pig but also in cat (2), and sheep (3), is indicative
of common mechanisms involved in respiratory and circulatory facet of
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immediate response to LPS. Indeed, PAF and/or TXA, were shown to be
involved in both airway and vascular responses to LPS in some species (2—4),
though the cellular source from which these mediators are released was not
identified so far.

In rats in vivo an immediate vascular pulmonary response to LPS occurs
within minutes after intravenous LPS injection and, similarly to the response in
cat, pig and dog, is also mediated by the release of PAF and TXA, (5).
However, it remains unknown whether immediate vascular response to LPS in
rats in vivo is accompanied by prompt bronchoconstriction as it is in other
species. On the other hand, in the isolated electrolite solution -perfused isolated
rat lung LPS failed to induce an immediate response to LPS and elicited only
a delayed solitary bronchoconstriction mediated by COX-2 derived TXA, (6).
Several authors found that blood cells are mandatory for LPS to elicit vascular
contraction (7—9), which may explain lack of vascular response to LPS in
Krebs-perfused isolated rat lung. However, it remains intriguing that
LPS-induced delayed bronchoconstriction shown in this preparation occurred
only 60 —90 minutes after LPS injection (6) in contrast with an immediate
pulmonary vascular response in rats in vivo observed by us (5). The above data
may suggest that rat lung response to LPS is biphasic, and each phase is being
mediated by bronchoconstrictor and vasoconstrictor lipids released from
various cellular sources in blood or in the lung parenchyma. In this study we
put this hypothesis to testing.

MATERIALS AND METHODS

Isolated lungs preparation

Lungs were isolated from Wistar rats weighing 200—250g (Lod:WIST BR from Animal
laboratory of Polish Mother’s Memorial Research Institute hospital in Lodz, Poland). In
anaesthetised rats (thiopentone 120 mg/kg, i.p.), trachea was cannulated and lungs were ventilated
with the positive pressures at a rate of 80 breaths/min (VCM module from Hugo Sachs
Electronik-HSE). After laparotomy, diaphragm was cut and nadroparine, at a dose of 600 1.U. was
injected into the right ventricle to prevent microthrombi formation during surgery. Then animals
were exsanguinated by incision of left renal artery. Lungs were exposed via a medial sternotomy.
The pulmonary artery and left atrium were cannulated via right and left atrium, respectively.
Immediately after cannulation the lung/heart block was dissected from the thorax. Using the
tracheal cannula the isolated lung was mounted in the water-jacketed (38°), air-tight glass chamber
(HSE), and ventilated with negative pressures. The residual blood was washed out within first 10
minutes of the initial perfusion with prewarmed (38°C) Krebs-Hanseleit buffer. Then lungs were
perfused with various fluids (see below) using a peristaltic pump (ISM 834, HSE) at a constant flow
of about 16 ml/min. The venous pressure was set at a level of 2—5 cm H,O.

The end-expiratory pressure in the chamber was set to be —2 cm H,O and inspiratory
pressure was adjusted between —6 to —10 cm H,O to yield an initial tidal volume (TV) of about
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2.0 ml. Breathing frequency was set to be 80 breaths/minute and a duration of inspiration versus
expiration was 1:1 in each breath. Every 5 min throughout the experiment a deep breath of
end-inspiratory pressure of —18 cm H,O was automatically initiated by VCM module (HSE) to
avoid atelectasis. The inspired air was moistured by bubbling through water. Airflow velocity was
measured with a pneumotachometer tube connected to a differential pressure transducer (HSE)
from which value of respiratory tidal volume was determined.

Both arterial and venous pulmonary pressures (PAP, PVP) were continuously monitored by
[SOTEC pressure transducers (HSE).

The weight of lungs was monitored by a specially-designed transducer (HSE) (10).

TV, PAP, PVP and lung weight data were acquired by the PC transducer card and
subsequently analysed by Pulmodyn-pulmo software (HSE), as well as continuously recorded on
Graphtec linear recorder WR 3310.

The perfusion procedure and experimental protocols

The following fluids were used to perfuse the lung preparation: rat full blood (FB), rat platelet
rich plasma (PRP), rat platelet poor plasma (PPP) or Krebs-Henseleit buffer (KH).

Blood was obtained from 2 Wistar rats (300—500 g body weight). Rats were anaesthetised
(thiopentone 120 mg/kg i.p.), injected with nadroparine (600 LU, ip.) and exsanguinated through
cannulated right carotid artery.

PRP or PPP were obtained by 10 min centrifugation of blood from donor rats at 200 g or 2000
g, respectively.

Krebs-Henseleit buffer (KH) was of the following composition (in mM): NaCl 118, KCl 4.7,
KH,PO, 1.2, MgSO, 1.2, CaCl, 2.5, NaHCO, 12.5, 4% albumin, 0.1% glucose and 0.3% HEPES.

The pH of perfusate was maintained at about 7.4 throughout the whole experiment by
continuous additioh of 5% CO, to the inspiratory air.

All lung preparations were allowed to equilibrate for the first 15 min until baseline PAP, PVP,
TV and weight were stable. At this moment weight of the lung (value of which varied considerably
between experiments) was set to zero.

LPS was injected 45 minutes after the beginning of the experiment. LPS was given as an
injection to the perfusion line leading to the pulmonary artery at a dose necessary to achieve a final
concentration required.

Camonagrel (300 uM), WEB 2170 (100 uM) or MK 571 (100 uM) were added to the reservoir
with perfusate 30 min prior to the injection of LPS.

All experiments lasted 160 min. Control lungs perfused with blood, PRP, PPP or KH,
subjected to no intervention were also included.

TV, PAP, PVP and weight were continuously monitored throughout the experiment, however,
only values at intervals of —30, 0, S, 10, 15, 30, 45, 60, 80, 100, 120 after LPS injection were
analysed.

Data were expressed as means + SEM of changes in TV (ATV), PAP (APAP), PVP (APVP), or
weight (Aweight) from values before LPS injection (—30 min time interval). Significance of
differences between groups was established by single factor analysis of variance (ANOVA) followed

by t-test for multiple comparison.

Reagents and drugs

LPS (Escherichia coli serotype 0127 B8) was purchased from Sigma Chemicals International;
bovine albumin fraction V was from Serva, Germany; thiopental sodium (Tiopental) was from
Biochemie GMBH, Germany; MK 571  (3-(3-(2-(7-chloro —2-quinolinyl)ethenyl)phenyl)
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((3-dimethylamino — 3-oxopropyl)thio)methyl)thio propanoic acid) was purchased from Biomol
Research Lab. Inc, USA; WEB 2170 (5-(2-chlorophenyl)— 3,4-dihydro—10-methyl—3-
[(4-morpholinyl)carbonyl] —2H,7H-cyclopenta[4,5]thieno[3,2-f1[1,2,4]triazolo[4,3-a][1,4]
diazepine) was a gift from Boehringer Ingelheim, Germany; Camonagrel CAM,
([ +]— 5-[2-imidazole — 1-ethyloxy]—1-indan-carboxylic acid hydrochloride) was a gift from
Ferrer inc. Spain. LPS, CAM, WEB 2170 and MK 571were dissolved in 1 ml of saline immediately
before administration.

RESULTS

Baseline TV, PAP, PVP values of isolated rat lung preparation

Baseline TV and PVP were similar in KH, PPP, PRP or blood-perfused
lungs and in all 54 lungs used; TV was 2.0+ 0.0 ml, and PVP was 2.8+0.1 cm
H,O. However, baseline PAP was higher in blood-perfused lungs (15.8 £0.5 cm
H,O) than in lungs perfused with KH, PPP or PRP (10.9+04, 93103,
94+0.6 cm H,O, respectively).

Isolated lung preparations perfused either with KH, PPP, PRP or with
blood maintained their integrity for at least 160 min. In control lungs only
a slight gradual increase in weight, in PAP and in PVP (less than 0.2 g/h, less
than 2 cm H,O/h and 1.2 cm H,O/h, respectively) as well as a slight decrease in
TV (less than 0.2 ml/h) were observed over time.

Characteristics of immediate and delayed response to LPS in blood-perfused
rat lung

In preliminary experiments blood-perfused lung was treated with
LPS at final concentrations ranging from 10 to 300 pg/ml. (Fig. I A-C).
A concentration of 300 pg/ml of LPS was chosen for further experiments since
only at that high concentration LPS produced immediate and delayed
responses of sufficient magnitude to be studied.

An original tracings of a biphasic response of isolated blood-perfused lung
to 300 pg/ml LPS is shown in Fig. 2. Immediate LPS response was coupled in
circulatory and respiratory systems whereas in delayed response the
respiratory changes were uncoupled from circulatory effects of LPS.

Immediate response

Immediate LPS-induced changes in ATV, APAP, and APVP started
simultaneously 1.540.1 min after LPS and reached its maximum
(ATVpax = —0.54+02ml, APAP,, =109+23cm H,O and APVP,.=
93+24cm H,O) as soon as 57+ 0.3 min after LPS (Fig. /, 2).
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Fig. 1. Effects of LPS (at final concentrations ranging from 10 to 300 pg/ml) on tidal volume (ATV,
Fig. 14) and pulmonary pressures response (APAP and APVP Fig. 1B, C) in isolated
blood-perfused rat lungs. Points represent means from n = 3+7 experiments and vertical bars

show S.E.M.*indicates p<0.05 vs blood-perfused lungs not injected with LPS
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Secondary to LPS- induced hemodynamic response slight weight increase was
noted (Aweight,,, = 157.6+32.8 mg). Immediate response to LPS was
transient and lasted 10—15 min (11.04+1.2, 159414 and 15.0+ 1.6 min for
ATV, APAP and APVP responses, respectively) although 20 min after LPS
slight ATV, APAP and APVP responses were still observed (-0.4+0.1 ml,
334+1.0 and 22+1.1 cm H,O, respectively).

Delayed response

Delayed response to LPS consisted of a gradual decline in TV
without accompanying changes in TV, PAP PVP and weight. This
response started at about 40 min after LPS and reached its plateau level
at about 90—120 min after LPS injection. Delayed fall in TV was of
approximately 2-fold greater magnitude then the immediate one
(Fig. 1, 2). ‘
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Influence of composition of perfusing fluid on biphasic LPS response

The influence of perfusate composition on biphasic LPS response was
studied using PRP, PPP or KH instead of blood for lung perfusion. When
lungs were perfused with KH or PPP instead of blood, injection of LPS failed
to induce an immediate ATV, APAP APVP and Aweight responses. On the
contrary, when PRP was used as a perfusate, a mild immediate increase in PAP
and negligible decrease in TV were noted (Fig. 34, B), though there was no
immediate response in PVP (Fig. 3C). Time course of APAP response in
PRP-perfused lung (Fig. 3B) was similar to that found in blood-perfused lungs
but its maximum was substantially smaller (2.9 +0.4 versus 10.9+2.3 cmH,O
in PRP and blood -perfused lungs, respectively). On the other hand, when KH,
PPP or PRP were used for lung perfusion delayed airway constriction was
observed, and its time course and magnitude was indistinguishable from that
occurring in blood-perfused lung (Fig. 3A).

Pharmacological analysis of role of PAF, TXA, and cysLTs in immediate and
delayed LPS responses

The role of platelet activating factor (PAF), thromboxane A, (TXA,) and
cysteinyl leukotrienes (cysLTs) in biphasic LPS response were assessed by
using PAF receptor antagonist (WEB 2170), a TXA, synthase inhibitor
(Camonagrel) and - cysLTs receptor antagonist (MK 571), respectively.
However, since the respiratory and vascular pulmonary responses to LPS were
substantially different in blood-perfused and KH-perfused Iung preparations,
and pattern of LPS response in PPP- and PRP-perfused lungs was similar to
that of KH-perfused preparations, (Fig. 3) our pharmacological analysis of LPS
response was confined to a comparison of blood-perfused versus KH-perfused
rat lungs.

Administration of Camonagrel (300 uM), WEB 2170 (100 uM), or MK 571
(100 uM) into blood-or KH-perfused lung was without any influence on the
baseline respiratory or circulatory parameters of the isolated lung (Fig. 44 — C,
Fig. 5).

In the blood-perfused lung immediate ATV, APAP and APVP responses to
LPS were abolished by pretreatment with Camonagrel, substantially inhibited
by WEB 2170, and not affected by MK 571 (Fig. 4 A—C). Differently, delayed
LPS-induced airway constriction was abolished by Camonagrel, whereas
neither WEB 2170 nor MK 571 were effective (Fig. 44— C).

Similarly to the blood-perfused lung preparation, in KH-perfused lung,
LPS-induced delayed airway constriction was abolished by Camonagrel but
not influenced by WEB 2170 or by MK 571 (Fig. 5).
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Fig.3. Influence of perfusate composition on immediate ATV, APAP, APVP and delayed ATV
responses to LPS in isolated rat lung. LPS (300 pg/ml) was injected into isolated rat lung perfused
with full blood (FB), platelet rich plasma (PRP), platelet poor plasma (PPP) or Krebs Henselait
solution (KH). Characteristic biphasic response to LPS was only seen in full blood-perfused lungs
whereas the delayed response was observed irrespective of the perfusing fluid. Points represent
means from n = 4+7 experiments and vertical bars show S.E.M.*indicates p<0.05 vs lungs not
injected with LPS perfused with the same perfusing fluid ie. full blood, PRP, PPP or KH.



559

CAM
or WEB
or MK LiS
0.0 -
A
-0.5
£
E -1.0 -
<
-15{ —®— LPS
—oO— CAM+LPS
—o— WEB +LPS
—4— MK+ LPS
2.0 -
0 20 P 60 100 120
20 - Time after LPS (min)
B
CAM
6 15 or WEB
ol or MK
£ |
O
~ 10 4
o
oy
4 -e— LPS
—o— CAM+LPS
51 _o— WEB+LPS
—a— MK+ LPS
o] —— E T T T T T
0w 20 40 60 80 100 120
Time after LPS (min)
20 -
| C
S 51
x CAM
g or WEB
~ 10 - or MK LPS
a
>
o
< —e— LPS
5S4 -3~ CAM+ LPS
—o— WEB +LPS
—a— MK+ LPS
o - T T = = —
[+] 20 40 60 80 100 120
Time after LPS (min)

Fig. 4. Involvement of TXA, and PAF in immediate ATV, (Fig. 44), APAP, APVP, (Fig. 4B-C) and in
delayed ATV responses to LPS (300 pg/ml) in the isolated blood-perfused rat lung. Both camonagrel
(300 pM), a thromboxane A, synthase inhibitor (CAM +LPS); and WEB 2170 (100 puM), a PAF
receptor antagonist (WEB+ LPS) inhibited an immediate response whereas delayed response was
inhibited only by camonagrel. MK 571 (100 uM), an cysteinyl leukotriene receptor antagonist did not
influence either immediate nor delayed response. Points represent means from n = 4+7 experiments
and vertical bars represent S.E.M.*indicates p<0.05 vs lungs injected with LPS (300 ug/ml) alone.
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Fig. 5. Involvement of TXA,, in delayed bronchoconstriction induced by LPS (300 pg/ml)

in the isolated KH-perfused rat lung. Camonagrel (300 pM) (CAM +LPS); but not WEB

2170 (100 pM), (WEB+LPS) and not MK 571 (100 uM), (MK +LPS) abolished delayed

LPS-induced bronchoconstriction. Points represent means from n =4-+7 experiments and

vertical bars represent S.E.M.*indicates p<0.05 vs lungs treated with LPS (300 pg/ml)
alone.

DISCUSSION

Whole blood-perfused and ventilated lung mimics closely in vivo conditions
and allows for simultaneous assessment of circulatory and respiratory
functions of the lung, in an easier fashion than in vivo (11). Indeed, in most
studies in vivo rather the effects of LPS on vascular tone but not on the lung
mechanics were measured (1, 5). Here, we characterized for first time both
circulatory and respiratory facets of rat lung response to LPS.

Wistar rat is known to be much less sensitive to LPS than other species
(12, 13). We had to use LPS at a concentration of 300 pg/ml in blood-perfused
rat lung to mimic the response of 10 mg/kg of LPS from our previous studies in
vivo (5, 14). However, that anticoagulation of blood with heparin may also
contribute to the low responsiveness of isolated blood-perfused lung to LPS,
since heparin is known to bind LPS (15—17).

In the present work we show that in blood-perfused rat lung the immediate,
transient response to LPS consists of coupled circulatory and respiratory
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reactions, i.e. an increase in pulmonary perfusion pressures and decrease in
respiratory tidal volume. On the contrary, the delayed response to LPS
consists of a sustained decrease in respiratory function that is uncoupled from
circulatory changes which simply do not occur.

Both respiratory and circulatory immediate responses were inhibited by
a PAF receptor antagonist, by a TXA, synthase inhibitor, but not by
a cysteinyl leukotriene receptor antagonist, whereas the delayed respiratory
response was inhibited only by a TXA, synthase inhibitor. Immediate
responses to LPS were expressed only in blood-perfused Iung and
rudimentarily in PRP-perfused lung, whereas a delayed response was of the
same magnitude and time course irrespective whether full blood, PRP, PPP or
KH solution were used for the lung perfusion.

Accordingly, PAF and TXA, released from blood cells seem to participate
in immediate vascular and airway responses to LPS, whereas the delayed
airway response is likely to depend on the TXA, synthesis that is completed
within lung tissue.

PAF was originally reported to be released from basophils in
response to IgE stimulation (18) and, later, it was found to be released
by numerous types of activated cells including platelets, neutrophils,
macrophages (19) and epithelial cells (20). Platelets and neutrophils were
shown to be directly activated by LPS within minutes after LPS
stimulation (21, 22) so PAF released from these cells could contribute to
the immediate LPS-induced broncho- and vaso- constriction. LPS may
also activate endothelial cells (19), however, PAF is then not released but
it remains associated with plasma membrane, and in a juxtacrine fashion
along with selectin P, is involved in neutrophil recruitment (23).
Accordingly, blood cells seem to be more feasible candidates as a source
of TXA, and PAF in the immediate LPS response, then vascular
endothelium.

Exogenous PAF was shown to release TXA,. Indeed, exogenous
PAF-induced bronchoconstriction and vasoconstriction were largely prevented
by COX inhibitors (24, 25) and some authors proposed that TXA, as a final
mediator of PAF induced response (26, 27), however, both PAF (28, 29) and
LPS (21) are known to activate platelets. In our blood-perfused lung
TXA, released from platelets being activated either by PAF or directly by LPS
seem to act as a final broncho- and vaso- constrictor in the immediate LPS
response.

We show here that LPS injected into PRP-perfused lung elicits a response
substantially smaller than that in blood-perfused lung. It seems therefore that
platelet activation alone could not generate enough PAF and TXA, to
reproduce the immediate airway and vascular response to LPS observed in full
blood. On the other hand, removal of either platelets (30) or leukocytes (31)
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from blood was shown to diminish the immediate response to LPS in vivo in
other species. This may suggest that participation of both types of cells is
required for the immediate LPS effects in the lung.

Activated isolated neutrophils or platelets release PAF only in modest
amounts (32). On the contrary, coincubated platelets and neutrophils
generate PAF abundantly (33). Neutrophils cannot synthetize TXA, on
their own since these cells lack TXA, synthase (34), but owing io
transcellular arachidonic acid transfer, coincubation of activated
neutrophils and platelets augments production of TXA, by platelets (35).
Our recent data (unpublished) showing that LPS is a potent inducer
of platelet-neutrophil adhesion in vitro may speak for a possible
involvement of platelet-neutrophil interactions in the immediate LPS
response. | |

In contrast with the immediate phase of LPS response, delayed airway
constriction did not require blood cells and could be evoked in
KH-perfused lung as found earlier (6). We also showed that platelets
would not contribute to this response as evidenced by the similar response
in KH and PRP-perfused lung. The response was still of approximately
the same magnitude when plasma alone was used to perfuse the lung
instead of KH. These data suggest that TXA, responsible for delayed
airway constriction is released from lung parenchyma directly by LPS
without participation of blood-cell derived lipids, LPS binding protein or
soluble CD14 (36—38).

Among over forty types of cells present in the lung only a few of
them are capable to produce TXA, in vitro e.g fibroblasts, mononuclear
cells (34) or endothelial cells (39). Immunostaining of TXA, synthase in
the lung points out to alveolar and bronchial macrophages as the cells
most likely to produce TXA, in the lung tissue (34). Moreover, alveolar
macrophages were shown to produce TXA, upon LPS stimulation in vitro
(40). Delayed airway constriction which was recently shown to depend
on COX-2 (6) was in our hands abolished by camonagrel, a thromboxane
synthase inhibitor. These data taken together suggest that TXA, responsible
for the LPS-induced delayed airway constriction is produced ‘most likely
in lung macrophages by consitutive TXA, synthase fed with cyclic
prostaglandin endoperoxides made by LPS-induced COX-2 isoform of the
enzyme.

In summary, analysis of circulatory and respiratory responses to LPS
in isolated rat lung perfused either with blood or plasma or platelets
rich plasma or Krebs buffer leads us to the conclusion that the immediate,
coupled respiratory/circulatory response to LPS occurs only in blood-perfused
lung and it is mediated by blood cells-derived TXA, and PAF. On the
other hand the delayed uncoupled respiratory response to LPS is mediated
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also by TXA,, although the generation of this mediator is confined to
the intrapulmonary sources.
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