Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 56 | 1 |
Tytuł artykułu

Ability of silver fir and European beech saplings to acclimate photochemical processes to the light environment under different canopies of trees

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ability to acclimate photochemical processes by saplings of silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.) growing in contrasting light environments was investigated using chlorophyll a fluorescence. The leaves of saplings acclimated to irradiance under the open canopy of Larix decidua Mill. showed higher photosynthetic efficiency and more efficient photoprotective mechanism than those under the shade of the denser Picea abies Karst. canopy. Interspecific differences in quantum yield of PS II photochemistry, apparent electron transport rate, non-photochemical quenching and the values of the cardinal points of light response curves of these parameters resulted from the shade adaptation of leaves and leaf lifespan. Acclimation to shade did not increase sensitivity to strong PS II downregulation induced by light patch of low intensity but predisposed both species to photoinhibition caused by high light stress. They were able to efficiently use light patches of low intensity, but after high light stress beech leaves from the Larix stand recovered more dynamically in quantum yield of PS II photochemistry than silver fir. It may give an advantage to beech in between-species competition for use of short-lasting and intensive sun patches.
Wydawca
-
Rocznik
Tom
56
Numer
1
Opis fizyczny
p.3-16,fig.,ref.
Twórcy
autor
  • August Cieszkowski Agricultural University of Poznan, Wojska Polskiego Str.69, 60-625 Poznan, Poland
autor
Bibliografia
  • Adams W.W., Zarter C.R., Ebbert V., Demmig-Adams B. 2004 – Photoprotective strategies of overwintering evergreens – BioScience, 54 (1): 41–49.
  • Adams W.W., Demmig-Adams B. 1994 – Carotenoid composition and down regulationof photosystem II in three conifer species during the winter – Physiol. Plant. 92: 451–458.
  • Aussenac G. 1973 – Effets de conditions microclimatiques differentes sur la morphologie et la structure anatomique des aiguilles de quelques resineux (Effects of different microclimate conditions on morphological and anatomical leaf structure of several conifers) – Ann. Sci. Forest. 30 (4): 375–392.
  • Brzeziecki B. 1995 – Skale nominalne wymagan klimatycznych gatunkow drzew lesnych (Scales of climatic requirements of forest tree species) – Sylwan, 3: 53–65. (in Polish)
  • Chow S.W., Lee H-Y., He J., Hendrickson L., Hong Y-N., Matsubara S. 2005 – Photoinactivation of photosystem II in leaves – Photosynth Res. 84: 35–41.
  • Close C.D., McArthur C. 2002 – Rethinking the role of many plant phenolics – protection from photodamage not herbivores? – Oikos, 99: 166–172.
  • Close C.D., Beadle L. Ch. 2006 – Leaf angle responds to nitrogen supply in eucalypt seedlings. Is it a photoprotective mehanism? – Tree Physiol. 26: 743–748.
  • Ellenberg H., Weber H.E., Dull R., Wirth V., Werner W., Paulissen D. 1992 – Zeigerwerte von Pflanzen in Mitteleuropa – Scripta Geobotanica, 18: 1–258.
  • Evans R.J. 1993 – Photosynthetic acclimation and nitrogen partitioning within a lucerne canopy. II Stability through time and comparison with a theoretical optimum – Aust. J. Plant. Physiol. 20: 69–82.
  • Fleck S., Niinemets U., Cescatti A., Tenhunen D.J. 2003 – Three-dimensional lamina architecture alters light-harvesting efficiencyin Fagus: a leaf-scale analysis – Tree Physiol. 23: 577–589.
  • Forestr y Compendium 2005 – Centre for Agriculture and Biosciences International. Abies alba. Fagus sylvatica. (In: Forestry Compendium, Global Edition) – CABI – Wallingford, UK.
  • Genty B., Briantais J-M., Baker N.R. 1989 – The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence – Biochim. Biophys. Acta, 990: 87–92.
  • Germino J.M., Smith K.W. 1999 – Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline – Plant Cell Environ. 22: 407–415.
  • Grassi G., Bagnaresi U. 2001 – Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient – Tree Physiol. 21: 959–967
  • Hikosaka K., Terashima I. 1995 – A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use – Plant, Cell Environ. 18: 605–618.
  • Hikosaka K., Terashima I. 1996 – Nitrogen partitioning among photosynthetic components and its consequences in sun and shade plants – Funct. Ecol. 10: 335–343.
  • Hjelm U., Ogren E. 2004 – Photosynthetic responses to short-term and long-term light variation in Pinus sylvestris and Salix dasyclados – Trees, 18: 622–629.
  • Jaworski A. 1995 – Charakterystyka hodowlana drzew leśnych (Sylvicultural characteristic of forest trees) – Gutenberg – Krakow, pp. 52–76. (in Polish)
  • Jifon L.J., Syversten P.J. 2003 – Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves – Tree Physiol. 23: 119–127.
  • Johnson M.D., Germino J.M., Smith K.W. 2004 – Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline – Tree Physiol. 24: 377–386.
  • Kazda M., Wagner C., Pichler M., Hager H. 1998 – Light utilisation potential of Quercus petraea, Fagus sylvatica and Acer pseudoplatanus measured during the year of advance planting – Allgemeine Forst- und Jagdzeitung, 169 (9): 157–163.
  • Kitao M., Lei T.T., Koike T., Tobita H., Maruyama Y. 2006 – Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade – Tree Physiol. 26: 441–448.
  • Kitao M., Lei T.T., Koike T., Tobita H., Maruyama Y. 2000 – Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes – Plant Cell Environ. 23:81–89.
  • Kuppers M., Timm H., Orth F., Stegemann J., Stober R., Schneider H., Paliwal K., Karunaichamy K.S.T.K., Oritz R. 1996 – Effects of light environment and successional status on lightfleck use by understory trees of temperate and tropical forests – Tree Physiol. 16: 69–80.
  • Lemon P.E. 1957 – A New Instrument for Measuring Forest Overstory Density – Jour. Forestry 55(9): 667–668.
  • Lepeduš H., Viljevac M., Cesar V., Ljubešić N. 2005 – Functioning of the photosynthetic apparatus under low and high light conditions in chlorotic spruce needles as evaluated by in vivo chlorophyll fluorescence – Russ. J. Plant Physl. 52 (2):191–197.
  • Lovelock E.C., Kursar A.T., Skillman B.J., Winter K. 1998 – Photoinhibition in tropical forest understorey species with short- and long-lived leaves – Funct. Ecol. 12: 553–560.
  • Luttge U., Berg A., Fetene M., Nauke P., Peter D., Beck E. 2002 – Comparative characterization of photosynthetic performance and water relations of native trees and exotic plantation trees in Ethiopian forest – Trees, 17 (1): 40–50.
  • Maxwell K., Johnson N.G. 2000 – Chlorophyll fluorescence – a practical guide – J. Exp. Bot. 51 (345): 659–668.
  • Niinemets U. 1997 – Acclimation to low irradiance in Picea abies: influences of past and present light climate on foliage structure and function – Tree Physiol. 17: 723–732
  • Niinemets U., Valladares F. 2004 – Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints – Plant Biol. 6: 254–268.
  • Niyogi K.K. 1999 – Photoprotection revisited: genetic and molecular approaches – Annu. Rev. Plant Phys. 50: 333–359.
  • Ogren E. 1988 – Photoinhibition of photosynthesis in willow leaves under field conditions – Planta, 175: 229–236.
  • Rascher U., Liebieg M., Luttge U. 2000 – Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field – Plant Cell Environ. 23: 1397–1405.
  • Reich B.P., Walters B.M., Tjoelker G.M., Vanderklein D., Buschena C. 1998 – Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate – Funct. Ecol. 12: 395–405.
  • Robakowski P., Wyka T., Samardakiewicz S., Kierzkowski D. 2004 – Growth, photosynthesis and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies – Forest Ecol. Manag. 201 (2–3): 211–227.
  • Shimizu M., Ishida A., Tange T., Yagi H. 2006 – Leaf turnover and growth responses of shade-grown saplings of four Shorea rain forest species to a sudden increase in light – Tree Physiol. 26: 449–457.
  • Valladares F., Chico J.M., Aranda I., Balaguer L., Dizengremel P., Manrique E., Dreyer E. 2002 – The greaterseedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity – Trees, 16: 395–403.
  • Verhoeven S.A., Adams W.W., Demming-Adams B. 1996 – Close relationship between the state of xanthophyll cycle pigments and photosystem II efficiency during recovery from winter stress – Physiol. Plant. 96: 567–576.
  • Weiner J. 1999 – Życie i ewolucja biosfery [Life and evolution of biosphere] – PWN Polish Scientific Publisher, Warszawa, pp. 1–591.
  • White J. A., Critchley Ch. 1999 – Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus – Photosynth Res. 59: 63–72.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-2e10958c-9103-4832-ab0c-66d4659d7561
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.