Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 3 | 305-319
Tytuł artykułu

Isolation, determination and sorption modelling of xenobiotics in plant materials

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crop models use mathematical equations to simulate the physical and chemical processes that generally control the uptake, translocation, and sorption of xenobiotics in all part of plants. Each compartment is anatomically characterized and described by a series of mathematical equations. Sample preparation, such as liquid extraction methods and solid-phase-based methods are presented. Analysis of xenobiotics are generally carried out by gas chromatography (GC) or liquid chromatography (LC) coupled to different detectors, especially to mass spectrometers (MSs) and hyphenated techniques that have become extremely developed in recent years. As an example the wheat plant, as a model to describe xenobiotic uptake by roots and sorption of xenobiotic in grain, is applied.
Wydawca
-
Rocznik
Tom
17
Numer
3
Strony
305-319
Opis fizyczny
p.305-319,fig.,ref.
Twórcy
autor
  • Plant Protection Institute, 20 Wegorka St., 60-318 Poznan, Poland
autor
Bibliografia
  • 1. Sobótka W., Środki ochrony roślin – spojrzenie w przyszłość. Progr. Plant Prot. 36, 314, 1996. [In Polish]
  • 2. Fryer M.E., Collins C.D., Model intercomparison for the uptake of organic chemicals by plants. Environ. Sci. Technol. 37, 1617, 2003.
  • 3. Lindstrom F.T., Boersma L., McFarlane C., Mathematical model of plant uptake and translocation of organic chemicals: Development of the model. J. Environ. Qual. 20, 129, 1991.
  • 4. Boersma L., McFarlane C., Lindstrom F.T., Mathematical model of plant uptake and translocation of organic chemicals: Application to experiments. J. Environ. Qual. 20, 137, 1991.
  • 5. Chiou C.T., Sheng G., Manes M., A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol. 35, 1437, 2001.
  • 6. Żebrowski W., Buszewski B., Lankmayr E., Modeling of uptake of xenobiotics in plants. Crit. Rev. Anal. Chem. 34, 147, 2004.
  • 7. Behrendt H., Bruggemann R., Morgenstern M., Numerical and analytical model of pesticide root uptake model comparison and sensitivities. Chemosph. 30, 1905, 1995.
  • 8. Trapp S., Mc Farlane J.C., Plant Contamination. Modeling and Simulation of Organic Chemical Processes. Lewis Publishers, 1995.
  • 9. Kopcewicz J., Lewak S., Basics of Plant Physiology. PWN, Warsaw, 1998.
  • 10. Singer S.J., Nicolson G.L., The fluid mosaic model of the structure of cell membranes. Science 18 Feb, 720, 1972.
  • 11. Ong S., Liu S., Qiu X., Bhat G., Pidgeon C., Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. Anal. Chem. 67, 755, 1995.
  • 12. Pidgeon C., Venkataram U.V., Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal. Biochem. 176, 36, 1989.
  • 13. Buszewski B., Jezierska M., Wełniak M., Berek, D., Survey and trends in the preparation of chemically bonded silica phases for LC analysis. J. High Resol. Chrom. 21, 267, 1998.
  • 14. Buszewski B., Jezierska M., Wełniak M., Kaliszan R., Cholesterol-silica stationary phase for LC. Comparative study of retention behaviour and selectivity. J. Chromatogr. A 845, 433, 1999.
  • 15. Górna-Binkul A., Kaczmarski K., Buszewski B., Modeling of the sorption and diffusion processes of volatile organic air pollutants in grape fruits. J. Agric. Food Chem. 49, 2889, 2001.
  • 16. Paterson S., Mackay D., McFarlane C., A model of organic chemical uptake by plants from soil and the atmosphere. Environ. Sci. Technol. 28, 2259, 1994.
  • 17. Trapp S., Mc Farlane C., Matthies M., Model for uptake of xenobiotics into plants: validation with bromacil experiments. Environ. Toxicol. Chem. 13, 413, 1994.
  • 18. Behrendt H., Bruggemann R., Modelling the fate of organic chemicals in the soil plant environment: model study of root uptake of pesticides. Chemosph. 27, 2325, 1993.
  • 19. Trapp S., Matthies M., Scheunert I., Topp E.M., Modeling the bioconcentration of organic chemicals in plants. Environ. Sci. Technol. 24, 1246, 1990.
  • 20. Paterson S., Mackay S., Tam D., Shiu W.Y., Uptake of organic chemicals by plants: a review of processes, correlations and models. Chemosph. 21, 297, 1990.
  • 21. Boersma L., Lindstrom F.T., McFarlane C., McCoy E.L., Uptake of organic chemicals by plants: a theoretical model. Soil Sci. 146, 403, 1988.
  • 22. Fujisawa T., Ichise K., Fukushima M., Katagi T., Takimoto Y., Improved uptake models of nonionized pesticides to foliage and seed of crops. J. Agric. Food Chem. 50, 532, 2002.
  • 23. Briggs G.G., Bromilow R.H., Evans A.A., Relationships between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic. Sci. 13, 495, 1982.
  • 24. Huie C.W., A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal. Bioanal. Chem. 373, 23, 2002.
  • 25. Ong E.S., Extraction methods and chemical standardization of botanicals and herbal preparations. J. Chromatogr. B 812, 23, 2004.
  • 26. Yu Ch., Cohen L., Tissue sample preparation – not the same old grind. LC-GC Eur. 17, 96, 2004.
  • 27. Ramos L., Ramos J.J., Brinkman U.A.Th., Miniaturization in sample treatment for environmental analysis. Anal. Bioanal. Chem. 381, 119, 2005.
  • 28. Nyredi SZ., Separation strategies of plant constituents– current status. J. Chromatogr. B 812, 35, 2004.
  • 29. Camel V., Recent extraction techniques for solid matrices – supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst 126, 1182, 2001.
  • 30. Andreu V., Pico Y., Determination of pesticides and their degradation products in soil: critical review and comparison of methods. Trends Anal. Chem. 23, 772, 2004.
  • 31. Smith R.M., Before the injection—modern methods of sample preparation for separation techniques. J. Chromatogr. A 1000, 3, 2003.
  • 32. Stecher G., Huck C.W., Stöggl W.M., Bonn G.K., Phytoanalysis: a challenge in phytomics. Trends Anal. Chem. 22, 1, 2003.
  • 33. Tsao R., Deng Z., Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B 812, 85, 2004.
  • 34. Adahchour M., Beens J., Vreuls R.J.J., Max Batenburg A., Brinkman U.A.Th., Comprehensive two-dimensional gas chromatography of complex samples by using a ‘reversed-type’ column combination: application to food analysis. J. Chromatogr. A 1054, 47, 2004.
  • 35. Tranchida P.Q., Dugo P., Dugo G., Mondello L., Comprehensive two-dimensional chromatography in food analysis. J. Chromatogr. A 1054, 3, 2004.
  • 36. Pico Y., Font G., Molto J.C., Manes J., Pesticide residue determination in fruit and vegetables by liquid chromatography–mass spectrometry. J. Chromatogr. A 882, 153, 2000.
  • 37. Careri M., Bianchini F., Corradini C., Recent advances in the application of mass spectrometry in foodrelated analysis. J. Chromatogr. A 970, 3, 2002.
  • 38. Wilson I.D., Brinkman U.A.Th., Hyphenation and hypernation: The practice and prospects of multiple hyphenation. J. Chromatogr. A 1000, 325, 2003.
  • 39. Hostettmann K., Wolfender J.-L., Terreaux C., Modern Screening Techniques for Plant Extracts. Pharm. Biol. 39, Suppl. 18, 2001.
  • 40. Michel M., Buszewski B., HPLC determination of pesticide residue isolated from food matrices. J. Liq. Chrom. & Relat. Technol. 25, 2293, 2002.
  • 41. Michel M., Buszewski B., Isolation and determination of carbendazim residue from wheat grain by matrix solidphase dispersion and HPLC. J. Sep. Sci. 26, 1269, 2003.
  • 42. Michel M., Buszewski B., Optimization of a matrix solid-phase dispersion method for the determination analysis of carbendazim residue in plant material. J. Chromatogr. B 800,: 309, 2004.
  • 43. Tomlin C. (ed.), The Pesticide Manual. British Crop Protection Council, Farnham UK., pp. 149-150, 1994.
  • 44. WHO, International programme on chemical safety. Environmental health criteria 149. Carbendazim. WHO Geneva, 2000.
  • 45. Online Biology Book, www.emc.maricopa.edu.
  • 46. Stryer L., Biochemistry. PWN, Warsaw, 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-2d87741c-df07-4e82-8cf4-3977f3bb0cf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.