Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
An increasing body of evidence suggests that glycolipid domains are present on the plasma membrane surface of mammalian cells and play a key role in signal transduction. We have investigated the modulation of glycolipid-protein interaction consequent to a specific event occurring at the plasma membrane. For this purpose, a new photoactivable, radioactive derivative of GM1 ganglioside, carrying a phenyldiazirine fatty acid labelled with 125I, has been used with rat cerebellar granule cells in culture. Upon incubation of photoactivable GM1 with the cells followed by illumination, several proteins become radioactive and were detectable on the two dimensional-electrophoresis, which points to their interaction with the ganglioside. Upon addition of cytotoxic doses of glutamate, known to induce indirectly the activation of protein kinase C (PKC), one of the proteins crosslinked by photoactivable GM1 in control cells of molecular mass about 92 kDa and pI about 4, was not anymore detectable; this suggests its exclusion from the glycolipid domains. On the contrary, another protein, of about 15 kDa and pI 6.5, previously not crosslinked, was interacting with the ganglioside derivative after glutamate treatment. Comparable effects were exerted by phorbol-2-myristate-3-acetate, which directly induces the activation of PKC. These results show that PKC activation, a key step of inbound trans-membrane signalling, affects the interaction between glycolipids and proteins at the plasma membrane surface, possibly within a mixed domain. The dynamic modulation of ganglioside-protein interaction may affect the involvement of glycolipid domains in membrane-located events such as signal transmission and lipid/protein sorting.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.393-401,fig.
Twórcy
autor
- University of Milano, Via Saldini 50, 20133 Milano, Italy
autor
autor
autor
autor
Bibliografia
- 1. Wiegandt, H. (1985) Gangliooidcs; in New Comperative Biochemistry (Wiegandt, H., ed.) vol. 10, Gliycolipids, pp. 199-260, Elsevier, Amsterdam.
- 2. Masserini, M., Palestini, P., Venerando, 13., Fiorilli, A., Acquotti, D. & Tettamanti, G. (1988) Interactions of proteins with ganglioside-enriched microdomains on the membrane: The lateral phase separation of molecular species of GDla ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 27, 7973-7978.
- 3. Thompson, T.E. & Tillack, T.W. (1985) Organization of glycosphingolipids in bilayer and plasma membrane of mammalian ceils. Anna. Rev. Biochem. Biophys. Chem. 22, 361-386.
- 4. Simons. K. & Van Meer, G. (1988) Lipid sortr ing in epithelial cells. Biochemistry 27, 6197-6202.
- 5. Parton, R.G. & Simons, K. (1995) Digging into caveolae. Science 269, 1398-1399.
- 6 Wu, C., Bute, S., Ing, Y. & Anderson, R.G. (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J. Biol Chem. 272, 3554-3559.
- 7. Brown, D.A. & Rose, J.K. (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533-544.
- 8. Schnitzer, J.E., Mcintosh, D.P., Dvorak, A.M., Liu, J. & Oh, P. (1995) Separation of caveolae from associated microdomains of GPI- anchored proteins. Science 269, 1435-1439.
- 9. Anderson, R.G. (1993) Caveolae: Where incoming and outgoing messengers meet. Proc. Nad. Acad. Sci U.S.A. 90, 10909-10913.
- 10. Parton, R.G. (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochenu Cytochem. 42, 155- 166.
- 11. Fra, A.M., Masserini, M., Palestini, P., Son- nino, S. & Simons, K. (1995) A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface FEBSLett 375, 11-14.
- 12.Sonnino, S., Chigorno, V., Acquotti, D., Pitto, M., Kirschner, G. & Tettamanti, G. (1989) A photoreactive derivative of radiolabeled GMl ganglioside: Preparation and use to establish the involvement of specific proteins in GMl uptake by human fibroblasts in culture. Biochemistry 28,77-84.
- 13. Pacuszka, T. & Panasiewicz, M. (1995) Photochemical labeling of human erythrocyte membrane with radioiodinable azidosalicylic acid derivative of globoside. Biochim. Biophys. Acta 1257, 265-273.
- 14. Tettamanti, G., Bonali, F., Marchesini, S. & Zambotti, V. (1973) A new procedure for the extraction and purification of brain gangliosides. Biochim. Biophys. Acta 296, 160-170.
- 15.Sonnino, S., Ghidoni, R., Gazzotti, G., Kirschner, G., Galli, G. & Tettamanti, G. (1984) High performance liquid chromatography preparation of the molecular species of GMl and GDla gangliosides with homogeneous fatty acid and long chain base composition. J. Lipid Res. 258, 620-629.
- 16. Brunner, J. (1989) Photochemical labeling of apolar phase of membrane. Methods EnzymoL 172, 628-687.
- 17. Gallo, V., Ciotti, T., Coletti, A., Aloisi, F. & Levi, G. (1982) Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc. Natl. Acad. Sci. U.S.A. 79, 7919-7923.
- 18. Dessi, F., Ben-Ari, Y. & Charriaut-Marlangue, C. (1994) Increased synthesis of specific proteins during glutamate-induced neuronal death in cerebellar culture. Brain Res. 654, 27-33.
- 19. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol Chem. 193, 265-275.
- 20. Schwarzmann, G., Hoffmann-Bleihauer, P., Shubert, J., Sandhoff, J. & Marsh, D. (1983) Incorporation of ganglioside analogues into fibroblast cell membranes. Biochemistry 22, 5041-5048.
- 21. Terzaghi, A., Tettamanti, G. & Masserini, M. (1993) Interaction of glycosphingolipids and glycoproteins: Thermotropic properties of model membranes containing GMI ganglioside and glycophorin. Biochemistry 32, 9722-9725.
- 22. Ferraretto, A., Pitto, M., Palcstini, P. & Masserini, M. (1997) Lipid domains in the membrane: Thermotropic properties of sphingomyelin vesicles containing GMI ganglioside and cholesterol. Biochemistry 36,9232-9236.
- 23. Palestini, P., Masserini, M. & Tettamanti, G. (1994) Exposure to galactose oxidase of GMI ganglioside molecular species embedded into phospholipid vesicles. FEBS Lett 350, 219- 222.
- 24. Calappi, E., Masserini, M., Schiavo, G., Monte- cucco, C. & Tettamanti, G. (1992) Lipid interaction of tetanus neurotoxin. A calorimetric and fluorescence spectroscopy study. FEBS Lett. 309, 107-110.
- 25. Mutoh, T., Tokuda, A., Miyadai, T., Hama- guschi, M. & Fujiki, N. (1995) Ganglioside GM1 binds to the Trk protein and regulates re- ceptor function. Proc. Natl Acad ScL U.S.A. 92. 5087-5091.
- 26. Simons. K. & Wandingen-Ness, A. (1990) Polarized sorting in epithelia. Cell 62,207-210.
- 27. Kurtzchalia, T.V., Hartmann, E. & Dupree, P. (1995) Guilt by insolubility — does a protein's detergent insolubility reflect a caveolar location? Trends Cell Biol 5, 187-189.
- 28. Welti, R. & Glaser, M. (1994) Lipid domains in model and biological membranes. Chem. Phys. Lipids 73, 121-137.
- 29. Dupree, P., Parton, R.G., Raposo, G., Kurz- chalia, V. & Simons, K. (1993) Caveolae and sorting in the ira/w-Golgi network of epithelial ceU s.EMBOJ. 12, 1597-1605.
- 30. Masserini, M., Palestini, P., Ferraretto, A., Terzaghi, A., Pitto, M. & Bottiroli, G. (1997) Membrane dynamics of glycolipid domains in cultured neurons studied by excimer formation imaging, (submitted)
- 31. Aronica, E., CondoreUi, D.F., Nicoletti, F., Dell' Albani, P., Amico, C. & Balazs, R. (1993) Metabotropic glutamate receptors in cultured cerebellar granule cells: Developmental profile. J. Neurochem. 60, 559-565.
- 32. Eboli, M.L., Ciotti, M.T., Mercanti, D. & Calis- sano, P. (1993) Differential involvement of protein kinase C in transmitter release and response to excitatory amino acids in cultured cerebellar neurons. Neurochem. Res. 18, 133- 138.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-2bf7c3df-b0a0-4fd0-b8a0-f094e41e4314