Warianty tytułu
Języki publikacji
Abstrakty
The insulin receptor (IR) and the insulin-like growth factor receptor I (IGF-IR) have different functions in cell growth, apoptosis, differentation, and transformation. Although some of these differences may be explained by the relative level of receptor expression and receptor structure (a and b subunits), they may also be attributed to differences in intracellular signals generated by insulin and IGF-I. The presence of hybrid receptors (IR ab subunits and IGF-IR ab subunits) making up the heterotetramers has added a new dimension to our understanding of the functional roles of these receptors. However, to date the results of efforts to understand the differences between these two closely related receptors have indicated mostly similarities. For example, both receptors utilize IRS-1/IRS-2 and Shc as immediate downstream adaptors, leading to activation of the Ras, Raf, ERK kinases and PI-3 kinase pathways. We have used the yeast two hybrid system to identify proteins which bind to the activated IGF-IR but not to the IR. The cytoplasmic domain of the IGF-IR was used to screen a human fetal brain library and two isoforms of the 14-3-3 family were identified. 14-3-3 proteins are a highly conserved family of proteins which have recently been shown to interact with other components of the mitogenic and apoptotic signaling pathways, including Raf, BAD, Bcr/Bcr-Abl, middle-T antigen, Ksr, PKC, PI-3 kinase, ASK1 kinase, and cdc25C phosphatase. We also identified human Grb10, an adaptor protein with SH2 domain associated with the IGF-IR b subunit. Smith's laboratory showed that Grb10 preferentially binds to the IR in intact cells. Using the interaction trap screen (active cytoplasmic domain of the IGF-IR) 55PIK and SOCS-2 proteins were also identified. However, 55PIK and SOCS-2 also interact with the IR in the yeast two hybrid system. These studies raise the possibility that 14-3-3 and Grb10 may play a role in insulin and IGF-I signal transduction and may underlie the observed differences.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.51-60,fig.
Twórcy
autor
- National Cancer Institute, Bethesda, Maryland 20892-1374, USA
Bibliografia
- 1. Nissley, P. & Lopaczynski, W. (1991) Insulinlike growth factor receptors. Growth Factors 5, 29-43.
- 2. Nissley, P., Dey, B.R., Frick, K., Lopaczynski, W., Terry, Ch. & Furlanetto, R.W. (1998) Differences between insulin and IGF-I signaling; in Molecular Mechanisms to Regulate the Activities of Insulin-like Growth Factors (Takano, K., Hizuka, N. & Takahashi, S.-I., eds.) pp. 291-300, Elsevier Science B.V.
- 3. Furlanetto, R.W., Frick, K., Dey, B.R., Lopaczynski, W., Terry, Ch., & Nissley, P. (1998) The yeast two-hybrid system to investigate IGF-I receptor signal transduction; in Molecular Mechanisms to Regulate the Activities of Insulin-like Growth Factors (Takano, K., Hi- zuka, N. & Takahashi, S-I., eds.) pp. 269-277, Elsevier Science B.V.
- 4. Schumacher, R., Mosthaf, L., Schlessinger, J., Brandenburg, D. & Ullrich, A. (1991) Insulin and insulin like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors. J. Biol Chem. 266,19288- 19295.
- 5. Schumacher, R., Soos, M.A., Schlessinger, J., Brandenburg, D., Siddle, K. & Ullrich, A. (1993) Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants. J. Biol. Chem. 268, 1087-1094.
- 6. Mynarcik, D.C., Williams, P.F., Shchaffer, L., Yu, G.Q. & Whittaker, J. (1997) Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptor-insights into mechanisms of ligand binding. J. Biol Chem. 272, 18650-18655.
- 7. McKern, N.M., Lou, M., Frenkel, M.J., Ver- kuylen, A., Bentley, J.D., Lovrecz, G.O., Ivan- cic, N., Elleman, T.C., Garrett, T.P.J., Cos- grove, L.J. & Ward, C.W. (1997) Crystallization of the first three domains of the human insulin-like growth factor-1 receptor. Protein Sci 6, 2663-2666.
- 8. Garrett, T., McKern, N.M., Lou, M., Frenkel, M.J., Bentley, J.D., Lovrecz, G.O., Elleman, T.C., Cosgrove, L.J. & Ward, C.W. (1998) Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature 394, 395-399.
- 9. Riddihough, G. (1998) A notch for IGF. Nature Struct Biol. 5. 674.
- 10. Jacobs, S. & Moxham, C. (1991) Hybrid receptors. New Biologist 3, 110-115.
- 11. Treadway. J.L., Morrison, B.D., Goldfine, I.D. & Pessin, J.E. (1989) Assembly of insulin/insulin-like growth factor-I hybrid receptors in vitro. J. Biol Chem. 264, 21450- 21453.
- 12. Lammers, R., Gray, A., Schlessinger, J., Ullrich, A.K. (1989) Differential signalling potential of insulin- and IGF-I receptor cytoplasmic domains. EMBO J. 8,1369-1375.
- 13. Frattali, A.L., Treadway, J.L. & Pessin, J.E. (1992) Insulin/IGF-1 hybrid receptors: Implications for the dominant-negative phenotype in syndromes of insulin resistance. J. CelL Biochem. 48, 43-50.
- 14. Cama, A., Quon, M.J., de la Luz Sierra, M. & Taylor, S.I. (1992) Substitution of isoleucine for methionine at position 1153 in the fi- subunit of the human insulin receptor. A mutation that impairs receptor tyrosine kinase activity, receptor endocytosis, and insulin action. J. Biol Chem. 267, 8383-8389.
- 15.Olefsky. J.M. (1990) The insulin receptor. A multifunctional protein. Diabetes 39, 1009- 1016.
- 16. Rechler, M.M. & Nissley, S.P. (1985) The nature and regulation of the receptors for insulin-like growth factors. Annu. Rev. Physiol 47, 425-442.
- 17. Tollefsen, S.E. & Thompson. K. (1988) The structural basis of ir>sulin-like growth factor I receptor high affinity binding. J. Biol Chem. 263, 16267-16273.
- 18. Tollefsen, S.E. Stoszek, R. & Thompson, K. (1991) Interaction of the a/5dimers of the insulin-like growth factor I receptor is required for receptor autophosphorylation. Biochemistry 30, 48-54.
- 19. Treadway, J.L., Morrison, B.D., Soos, M.A., Siddle, K., Olefsky, J., Ullrich, A., McClain, D.A. & Pessin, J.E. (1991) Transdominant inhibition of tyrosine kinase activity in mutant insulin/insulin-like growth factor I hybrid receptors. Pnc. Natl Acad. ScL U.S.A. 88, 214-218.
- 20. Adamo, M., Roberts, Ch.T. & LeRoith, D. (1992) How distinct are the insulin and insulin-like growth factor I signaling systems? BioFactors 3, 151-157.
- 21. Baserga, R., Prisco, M. & Resnicoff, M. (1998) The multiple roles of the IGF-I receptor in cell growth; in Molecular Mechanisms to Regulate the Activities of Insulin-like Growth Factors (Takano. K., Hizuka, N. & Takahashi, S.-I., eds.) pp. 301-308, Elsevier Science B.V.
- 22. O'Connor, R., Kauffmann-Zeh, A., Liu, Y., Le- har, S., Evan, G.I., Baserga, R. & Blattler, W.A. (1997) Identification of domains of the insulin-like growth factor I receptors that are required for protection from apoptosis. Mol. Cell. Biol. 17, 427-435.
- 23. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M.. Graf, L., Clauser, E., Qu, J., Masiarz, F., Kan, Y.W., Goldfine, I.D., Roth, R.A. & Tutter, W.J. (1985) The human insulin receptor cDNA: The structural basis for hormone- activated transmembrane signaling. Cell 40, 747.
- 24. Cheatham, B. & Kahn, C.R. (1995) Insulin action and insulin signaling network Endocrinol Rev. 16, 117-142.
- 25. Ullrich, A., Gray. A., Tam, A.W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., Le Bon, T., Kathuria, S., Chen, E., Jacobs, S., Francke, U., Ramachandran, J. & Fugita- Yamaguchi, Y. (1986) Insulin-like growth factor I receptor primary structure: Comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5. 2503-2512.
- 26. Kato, H., Faria, T.N., Stannard, B., Roberts. C.T. & LeRoith, D. (1993) Role of tyrosine kinase activity in signal transduction by the insulin-like growth factor-I(IGF-D receptor. J. Biol Chem. 265. 2655-2661.
- 27. Hubbard, S.R., Wei, L., Ellis, L. & Hendrick- son, W.A. (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372,746-754.
- 28. Pawson, T. (1995) Protein modules and signalling networks. Nature 373, 573-580.
- 29. Furlanetto, R., Day, B., Lopaczynski, W. & Nissley, P. (1997) Proteins interact with IGF-I receptor. Biochem. J. 327, 765-771.
- 30. Dey, B., Frick, K., Lopaczynski, W., Nissley, S.P. & Furlanetto, R. (1996) Evidence for direct interaction of the IGF-I receptor with IRS-I, She and Grb-10. Mol Endocrinol. 10, 631-641.
- 31. Craparo, A., Freund, R. & Gustafson, T.A. (1997) 14-3-3 (c) Interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J. Biol Chem. 272, 11663-11669.
- 32. Pawson, T. & Scott, J.D. (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075-2080.
- 33. Hsu, S.Y., Kaipia, A., Zhu, L. & Hsueh, A.J.W. (1997) Interference of BAD (Bcl-xL/Bcl-2- associated death promoter>induced apoptosis in mammalian cells by 14-3-3 isoforms and Pll. Mol Endocrinol. 11, 1858-1867.
- 34. Peng. C.Y., Graves, P.R., Thoma, R.S., Wu, Z., Shaw, A.S. & Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control regulation of 14-3-3 protein binding by phosphorylation of Cdc25c on serine-216. Science 277. 1501- 1505.
- 35. Zeng. Y., Chrispell, Forbes, K., Wu, Z., Moreno, S., Piwnica-Worms, H. & Enoch, T. (1998) Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cdsl or Chkl. Nature 395, 507-510.
- 36. Morrison. D. (1994) 14-3-3: Modulators of signaling proteins? Science 266, 56-57.
- 37. Fu, H., Xia, K., Pallas, D.C., Cui, C., Conroy, K., Narsimhan, R.P., Mamon, H., Collier, R.J. & Roberts, T.M. (1994) Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266, 126-133.
- 38. Zhang, L. & Fu, H. (1998) Interaction of 14-3-3 proteins with ASK1 kinase that activates SAP/JNK and p38 pathways. FASEB J. 12, A1403.
- 39. Liu, D., Bieńkowska, J., Petosa, C., Collier, R.J., Fu, H. & Liddington, R. (1995) Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376, 191-194.
- 40. Xiao, B., Smerdon, S.J., Jones, D.H., Dodson, G.G., Soneji, Y., Aitken, A. & Gamblin, S.J. (1995) Structure of a 14-3-3 protein and implications for ccordination of multiple signalling pathways. Nature 376, 188-191.
- 41. Tzivion, G., Luo, Z. & Avruch, J. (1998) A di- meric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394, 88-92.
- 42. Laviola, L., Giorgino, F., Chow, J.C., Baquero, J.A., Hansen. H., Ooi, J., Zhu, J., Riedel, H. & Smith, R.J. (1997) The adapter protein GrblO associates preferentially with the insulin receptor as compared with the IGF-I receptor in mouse fibroblasts J. Clin. Invest 99, 830- 837.
- 43. Dong, L.Q., Farris, S., Christal, J. & Liu, F. (1998) Site-directed mutagenesis and yeast two-hybrid studies of the insulin and insulin- like growth factor-1 receptors: The Src ho- mology-2 domain-containing protein hGrblO binds to the autophosphorylated tyrosine residues in the kinase domain of the insulin receptor. Mol Endocrinol. 11, 1757-1765.
- 44. Dey, B.R., Parlanetto, R.W. & Nissley, S.P. (1998) Cloning of human p55y, regulatory subunit of phosphatidylinositol 3-kinase, by a yeast two-hybrid library screen with the insulin-like growth factor-I receptor. Gene 201, 175-183.
- 45. Dey, B.R., Spence, S.L., Nissley, P. & Fur- lanetto, R.W. (1998) Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J. Biol Chem. 273, 24095-24101.
- 46. Naka, T., Narazaki, M., Hirata, M., Matsu- moto, T., Minamoto, S., Aono, A., Nishimoto, N., Kajita, T., Taga, T., Yoshizaki, K., Akira, S. & Kishimoto, T. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387, 924-929.
- 47. Starr, R., Wilson, T., Viney, E.M., Murray, L.J.L., Rayner, J.R., Jenkins, B.S., Gonda, T.J., Alexander, W.S., Metcalf, D., Nicola, N.A. & Hilton, D.J. (1997) A family of cytokine-inducible inhibitors of signaling. Nature 387, 917-921.
- 48. Sawka-Verhelle, D., Filloux, C., Tartare- Deckert, S., Mothe, I. & Van Obberghen, E. (1997) Identification of Stat 5B as a substrate of the insulin receptor. Eur. J. Biochem. 250, 411-417.
- 49. Gual, P., Baron, V., Lequoy, V. & Van Obberghen, E. (1998) Interaction of Janus kinases JAK-1 and JAK-2 with the insulin receptor and the insulin-like growth factor-1 receptor. Endocrinology 139, 884-893.
- 50. Kimura, K., Tissenbaum, H.A., Liu, Y. & Ruvkun, G. (1997) daf-2, An insulin receptorlike gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946.
- 51. Wood, W.B. (1998) Aging of C. elegans: Mosaics and mechanisms. Cell 95, 147-150.
- 52. Apfeld. J. & Kenyon, C. (1998) Cell nonauton- omy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 95, 199- 210.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-271187cf-b32b-4dba-a155-c365711d5c78