Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The activities of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione-S-transferase (GST) and glutathione reductase (GR) were examined in liver, kidney cortex and heart tissues of lambs fed diets supplemented with inorganic (sodium selenite) and an organic (Se-yeast) form of selenium. Additional selenium resulted in a significant increase of the Se content in the examined tissues in both supplemented groups. The activities of GSHPx, CAT in the liver as well as of CAT, GST and SOD in the kidney cortex were significantly lower in the Se-yeast supplemented group when compared with both the control and selenite-fed groups. In the heart, the activities of all of the assayed enzymes increased in both supplemented groups. SOD activity was found to be significantly higher in the Se-yeast supplemented group when compared with the selenite group. In addition, two Cu, Zn-SOD isoenzymes of higher band intensity were generated in this group, probably as a result of oxidative stress, which was also manifested by a significant increase of thiobarbituric acid reactive substances (TBARS). The presented results suggest specific regulation of antioxidant enzyme activities in the tissues of lambs depending on the form of selenium intake.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
569-557
Opis fizyczny
p.569-557,fig.,ref.
Twórcy
autor
- University of Veterinary Medicine, 041 81 Kosice, Slovak Republic
autor
autor
autor
autor
autor
autor
autor
Bibliografia
- Beauchamp C.O., Fridovich I., 1971. Superoxide dismutase: improved assays and an assay applicable to acryl amide gels. Anal. Biochem. 44, 276-287
- Bermano G., Nicol F., Dyer J.A., Sunde R.A., Beckett G.J., Arthur J.R., Hesketh J.E., 1996. Selenoprotein gene expression during selenium-repletion of selenium deficient rats. Biol. Tr. Elem. Res. 51, 211-223
- Bradford M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254
- Di Meo S., Venditti P., De Leo T., 1996. Tissue protection against oxidative stress. Experientia 52, 786-793
- Flohé L., Günzler W.A., 1984. Assays of glutathione peroxidase. Methods Enzymol. 105, 114-121
- Flohé L., Ötting F., 1984. Superoxide dismutase assays. Methods Enzymol. 105, 93-104
- Foster S.J., Kraus R.J., Ganther H.E., 1986. The metabolism of selenomethionine, Semethylselenocysteine, their selenonium derivatives, and trimethylselenonium in the rat. Arch. Biochem. Biophys. 251, 77-86
- Fridovich I., 1975. Superoxide dismutases. Annu. Rev. Biochem. 44, 147-159
- Gutteridge J.M.C., 1984. Ferrous ion-EDTA-stimulated phospholipid peroxidation. Biochem. J. 224, 697-701
- Habig W.H., Jakoby W.B., 1981. Assays for differentiation of glutathione-S-transferases. Methods Enzymol. 77, 398-405
- Hakkarainen J., 1993. Bioavailability of selenium. Norwegian J. Agr. Sci. 11, 21-35
- Holovská K., Lenártová V., Pedrajas J.R., Peinado J., López-Barea J., Rosival I., Legáth J., 1996. Superoxide dismutase, glutathione peroxidase and glutathione reductase in sheep organs. Comp. Biochem. Physiol. 115B, 451-456
- Li L., Xie Y., El-Sayed W. M., Szakacs J.G., Roberts J.C., 2004. Characteristics of selenazolidine prodrugs of selenocysteine : toxicity, selenium levels, and glutathione peroxidase induction in A/J mice. Life Sci. 75, 447-459
- Pinto M.C., Mata A.M., López-Barea J., 1984. Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch. Biochem. Biophys. 228, 1-12
- Rayman M.P., 2004. The use of high-selenium yeast to raise selenium status: how does it measure up? Brit. J. Nutr. 92, 557-573
- Reilly C., 1998. Selenium: A new entrant into the functional food arena. Trends Food Sci. Technol. 9, 114-118
- Rodriguez E.M., Sanz M.T., Romero C.D., 1994. Critical study of fluorimetric determination of selenium in urine. Talanta 12, 2025-2031
- Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G., 1973. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 577-590
- Schrauzer G.N., 2000. Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J. Nutr. 130, 1653-1656
- Sizer I.W., Beers Jr. R.F., 1952. A spectrofotometric method for measuring the breakdown of hydrogen peroxid by catalase. J. Biol. Chem. 195, 133-139
- Wen H.Y., Davis R.L., Shi B., Chen J.J., Chen L., Boylan M., Spallholz J.E., 1997. Bioavailability of selenium from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine, and sodium selenite assessed in selenium-deficient rats. Biol. Tr. Elem. Res. 58, 43-53
- Wolffram S., 1999. Absorption and metabolism of selenium: differences between inorganic and organic sources. In: T.P. Lyons, K.A. Jacques (Editors). Biotechnology in the Feed Industry. Nottingham University Press, pp. 547-566
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-25b003aa-715a-4ea4-84d2-f08eb4ca5d3f