Warianty tytułu
Języki publikacji
Abstrakty
Principles of contemporary theoretical description of a-helix formation by polypeptide chains in water solution are shortly presented and critically discussed. The theory treats the unfolded state of a peptide as "random coil" — an ideal conformation quite distant from reality. We suggest that for this reason the helix propagation parameters of amino-acid residues, determined using series of model peptides with different sequential patterns, are not the same. Interpretation of the so called "nucleation parameter" is erroneous. In fact, it is not determined by the helix nucleation process but rather by a specific situation of residues at the helix N- and C-termini, and it strongly depends on solvation of their NH and CO groups, respectively. Consequently, helical segments with terminal sequences dominated by residues with strongly hydrophobic, bulky side chains can be very unstable. We postulate that an unexpectedly high stability of very short, pre-nucleated helices studied by us arises from a "helix end separation effect": separated helix termini are better solvated than when they overlap each other. Because of this effect, helix initiation may be much more difficult than predicted by the theoretical "helix nucleation parameters".
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.423-432,fig.
Twórcy
autor
- Polish Academy of Sciences, A.Pawinskiego 5a, 02-106 Warsaw, Poland
autor
Bibliografia
- 1. Ziram, B.H. & Bragg. J.K. (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31,526-535.
- 2. Lifson, S. & Roig, A. (1961) On the theory of helix-coil transition in polypeptides. J. Chem. Phys. 34, 1963-1974.
- 3. Pauling, L., Corey, R.B. & Branson, H.R. (1951) The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A. 37, 205-211.
- 4. Aqvist, J., Luecke, H., Quiocho, F.A. & War- shel, A. (1991) Dipoles localized at helix termini of proteins stabilize charges. Proc. Natl. Acad. Sci. U.S.A. 88. 2026-2030.
- 5. Qian, H. & Schellman, J.A. (1992) Helix-coil theories: A comparative study for finite length polypeptides. J. Phys. Chem. 96, 3987-3994.
- 6. Bierzyriski, A. (1987) The a-helical conformation of short natural polypeptide chains in water solutions. Comments Mol. Cell. Bio- phys. 4, 189-214.
- 7. Chakrabartty, A. & Baldwin, R.L. (1995) Stability of a-helices. Adv. Protein Chem. 46, 141-176.
- 8. Baldwin, R.L. (1995) a-Helix formation by peptides of defined sequence. Biophys. Chem. 55, 127-135.
- 9. Zhou, H.X., Lyu, P.. Wemmer, D.E. & Kallen- bach, N.R. (1994) Alpha helix capping in synthetic model peptides by reciprocal side chain- main chain interactions: Evidence for an N terminal "capping box". Proteins 18, 1-7.
- 10. Seale, J.W., Srinivasan, R. & Rose, G.D. ( 1994) Sequence determinants of the capping box, a stabilizing motif at the N-termini of a-helices. Protein Sci. 3, 1741-1745.
- 11. Milner-White. E.J. (1988) Recurring loop motif in proteins that occurs in right-handed and left-handed forms. J. Mol. Biol. 199,503-511.
- 12. Presta, L.G. & Rose, G.D. (1988) Helix signals in proteins. Science 240. 1632-1641.
- 13. Creamer, T.P. & Rose, G.D. (1995) Interactions between hydrophobic side chains within a-helices. Protein Sci. 4, 1305-1314.
- 14. Munoz, V. & Serrano, L. (1995) Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J. Mol. Biol. 245, 275-296.
- 15. Stapley, B.J., Rohl, C.A. & Doig, A.J. (1995) Addition of side chain interactions to modified Lifson-Roig helix-coli theory: Application to energetics of phenylalanine-methionine interactions. Protein Sci. 4, 2383-2391.
- 16. Munoz, V. & Serrano, L. (1995) Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. J. Mol. Biol. 245, 297-308.
- 17. Brant, D.A. & Flory, P.J. (1965) The configuration of random polypeptide chains. II. Theory. J. Am. Chem. Soc. 87, 2791-2800.
- 18. Nemethy, G. & Scheraga, H.A. (1977) Protein folding. Quat. Rev. Biophys. 10, 239-352.
- 19. Dyson, H.J. & Wright, P.E. (1993) Peptide conformation and protein folding. Curr. Opin. Struct. Biol. 3, 60-65.
- 20. Brooks III, C.L. (1993) Molecular simulations of peptide and protein unfolding: In quest of molten globule. Curr. Opin. Struct. Biol. 3, 92-98.
- 21. Amir, D. & Haas, E. Q988) Reduced bovine pancreatic inhibitor has a compact structure. Biochemistry 27, 8889-8893.
- 22. Gussakovsky, E.E. & Haas, E. (1992) The compact state of reduced bovine pancreatic trypsin inhibitor is not the compact molten globule. FEBS Lett. 308. 146-148.
- 23. Fukugita, M., Lancaster, D. & Mitchard, M.G. (1993) Kinematics and thermodynamics of a folding heteropolymer. Proc. Natl. Acad. Sci. U.S.A. 90, 6365-6368.
- 24. Chakrabartty. A., Kortemme, T. & Baldwin, R.L. (1994) Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 3, 843-852.
- 25. Gans, P.J., Lyu, P.C., Manning, M.C., Woody, R.W. & Kallenbach, N.R. (1991) The helix-coil transition in heterogeneous peptides with specific side-chain interactions: Theory and comparison with CD spectral data. Biopolym- ers 31, 1605-1614.
- 26. Doig, A.J. & Baldwin, R.L. (1995) N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci. 4, 1325-1336.
- 27. Park, S.-H., Shalongo, W. & Stcllwagen, E. (1993) Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Biochemistry 32. 7048-7053.
- 28. Rose, G.D. & Wolfenden, R. (1993) Hydrogen bonding, hydrophobicity, packing, and protein folding. Annu. Rev. Biophys. Biomol. Struct. 22, 381-415.
- 29. Dadlez, M., Góral, J. & Bierzyński, A. (1991) Luminescence of peptide-bound terbium ions. Determination of binding constants. FEBS Lett. 282, 143-146.
- 30. Wójcik, J., Góral, J., Pawłowski, K. & Bierzyński, A. (1997) Isolated calcium-binding loops of EF-hand proteins can dimerize to form a native-like structure. Biochemistry 36. 680-687.
- 31. Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S.J. & Weiner, P. (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765-784.
- 32. Harpaz, Y., Elmasry, N., Fersht, A.R. & Hen- rick, K. (1994) Direct observation of better hydration at the N-terminus of an a-helix with glycine rather than alanine as the N-cap residue. Proc. Natl. Acad. Sci. U.S.A. 91, 311-315.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-24cf9042-89c1-4b3f-997d-a89da72f664c