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The branched chain fatty acid, valproate, has a number of distinct pharmacological
effects on the central nervous system. In experimental animals it showed clear
anticonvulsant activity, an observation which led to its major clinical use as an
antiepileptic agent, especially in petit mal seizures. More recently, valproate has
shown its usefulness in treating mood disorders and migraine headachey. The basis
for its clinical efficacy might be related to its ability to enhance central GABAergic
neurotransmission or perhaps to its inhibition of Na*channels. Whether each of the
distinct therapeutic effects of valproate has the same molecular basis is not known.
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INTRODUCTION

.Valproic acid (also known as 2-propylpentanoic acid or n-dipropylacetic
acid) is a branched chain fatty acid (Fig. /), and is a liquid at room temperature.
.Indeed, it is because of its physical properties that we now know this is an
Important antiepileptic drug. Meunier and colleagues (1) were studying
compounds for their effects against drug-induced seizures in experimental
amimals. These compounds were dissolved in valproic acid before injection.
Each of the drugs exhibited anticonvulsant properties and subsequently the
Investigators showed that it was the vehicle which provided the
Pharmacological effects. Sodium valproate, the sodium salt, is equally
efficacious at suppressing seizures.

. In addition to its inhibitory effects on epileptic seizures, sodium valproate
IS also a useful drug in the suppression of the development of migraine
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headaches (2) and as a means of treating patients with emotional disorders such
as manic depressive illness or panic disorder (3, 4).
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Fig. 1. Chemical structure of valproic acid

PHARMACOLOGY

Antiepileptic Activity

Valproate is unusual as an anticonvulsant since it is effective against most
forms of epilepsy, particularly generalized seizures. Moreover, in experimental
animals it requires relatively high doses to be effective (plasma levels: 1.4—3.5
mM) yet in humans a much lower dose is adequate (plama concentration
range: 350—700 pM) (5). In animal models of epilepsy valproate is the most
effective ‘against pentylenetetrazol-induced seizures, a model for absence
seizures, but it also provides good protection against electroshock-induced
convulsions, a model of grand mal epilepsy (6).

Mechanism of Anticonvulsant Effect

The two broad types of mechanisms to be considered are (a) those involving
intracellular events, e.g., inhibition of enzyme activity or effects on nucleic acid
function, and (b) those involving events at the plasma membrane, €.g.,

alterations of ion channel or receptor function. These mechanisms are not
necessarily mutally exclusive.

1. Effects on intracellular events

Since y-aminobutyric acid (GABA) is the main inhibitory chemical
transmitter in the brain (7), it is intuitive to speculate that it might be
associated with seizure activity. Indeed, there is considerable evidence fr(?m
animal studies that a reduction in GABA function leads to convulsive activity
(8, 9). Such strong evidence, though, is lacking in human epilepsy (10)
Nevertheless, in principle a drug that can enhance central GABA
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neurotransmission should possess antiepileptic properties. The mechanism of
action of several clinically useful therapeutic agents support this idea, e.g.,
phenobarbital, diazepam, and vigabatrin. Consequently, it is not surprising
that studies of the potential effects of valproate on the GABA system have
received much attention.

The first attempt at elucidating the mechanism of action of valproate by
studying effects on GABA was reported by Godin et al. (11). They injected
200 mg/kg into rats and after 1 hr the GABA content of whole brain had
increased approximately 30%. The rise in GABA levels was attributed to the
inhibition of GABA aminotransferase, an effect they also showed to occur in
vitro, albeit at high inhibitor concentrations. Further experiments (12)
confirmed the elevated brain GABA concentrations following valproate
treatment and the weak inhibitory action of valproate on GABA
aminotransferase. The nature of this inhibition was found to be competitive
with respect to GABA. Others observed that sub-chronic treatment of rats with
valproate for 10 days led to an increase in GABA concentrations in several
brain regions (13); and in human epilepsy GABA levels were elevated in
cerebrospinal fluid after valproate administration (14). A detailed kinetic
analysis of the inhibition of rabbit brain GABA aminotransferase by valproate
supported the competitive nature of the inhibition, yielding a K; of 42 mM and
confirming the low sensitivity of the enzyme to the inhibitor (15). After
administering high doses of valproate to audiogenic seizure-susceptible mice,
Anlezark et al. (16) reported a total lack of response to auditory stimulation,
together with a 57% increase in brain GABA levels and a modest reduction in
GABA aminotransferase activity 45 min later. Ldscher (17) measured GABA
aminotransferase activity in synaptosomes isolated from various brain regions
after the intraperitoneal injection of valproate, and noted that enzyme activity
decreased by about 25% in substantia nigra, with smaller reductions in the
pons and medulla. When whole tissue was used, however, no such decreases in
“zyme activity were apperent. Interestingly, from an investigation employing
nel{rons and astrocytes in culture, it was found that neuronal GABA
aminotransferase was much more sensitive to valproate than the glial enzyme
(18)- Other studies, though, have failed to show an effect on GABA
dminotransferase activity in vivo after valproate treatment (19—21).

'Hearl and Churchich (22) have presented convincing evidence that GABA
dmmnotransferase and succinic semialdehyde dehydrogenase (SSADH) form
4 Catalytic protein complex which is responsible for the metabolic conversion
(c)ift GABA to succinate, allowipg Fhe carbon skeleton of GABA to enter the
Valnc aCId.cycle. Compared W}th its weak effect on GABA aminotransferase,
facf(?;te Is much more effective at inhibiting SSADH — about 30-times, in
o ) Thls.ha§ led to the suggestion that the elevation of GABA levels in the

4In are the indirect result of the inhibition of SSADH. The actual mechanism
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might be a slow-down in GABA aminotransferase activity caused by ap
accumulation of its product, succinic semialdehyde, and by an actual reversal
of the reaction (24). Maitre et al. (25) used a series of SSADH inhibitors in
order to see if GABA synthesis from succinic semialdehyde could be detected.
No synthesis could be measured, but since these were in vitro experiments, the
relevance of the observations have to be questioned. Even if a reversal of
GABA aminotransferase did occur under such conditions, it would not be
expected that the concentrations of succinic semialdehyde in the brain would
contribute significantly to the reported increases in GABA levels. However, it
has been calculated that the plasma concentrations of valproate required for it
to be an effective antiepileptic agent are in the range 0.1-0.8 mM (26), and it
could be anticipated that levels in the brain would be below these values.
Indeed, one study claims that this concentration is about 50 pM (27).
Accordingly, it seems improbable that a direct inhibition of GABA
aminotransferase occurs. Even the idea of an inhibition of SSADH in vivo to
explain the anticonvulsant effects of valproate is difficult to sustain since
relatively high K; values have been reported (0.5 mM to 1.5 mM) (23, 24).

Some studies have indicated that another mechanism to explain the
elevation of cerebral GABA concentrations by valproate might be an increase
in glutamate decarboxylase activity (28—30). Other investigations have
supported this idea. For example, Loscher (31) reported an increase in GABA
turnover in certain brain regions after valproate administration, and
experiments by Taberner ef al. (32) demonstrated that the incorporation of “C
from radiolabelled glucose into GABA was increased in rats receiving
valproate. On the other hand, two studies in which the incorporation of *C
from glutamate into GABA was measured clearly show that ['“C]GABA
formation was inhibited by valproate (33, 34). Moreover, Godin et al. (11)
noticed a weak inhibition of glutamate decarboxylase in vitro. Hence the notion
that the observed increases in GABA levels after valproate dosing are due to an
increased synthesis of the amino acid is still open to doubt.

y-Hydroxybutyrate (GHB) is a metabolite of GABA that possesses certain
attributes of an inhibitory neurotransmitter (35). It is synthesized in brain by
the catalytic action of succinic semialdehyde reductase. In vitro studies have
indicated that valproate can inhibit this biosynthesis (36). However, a recent
report suggests that a cloned version of the enzyme from rat is insensitive t0
valproate (37). Consequently, how much of the pharmacology of valproate is
related to its effects on GHB is unknown.

Valproate might have an effect on gene regulation because when incubated
with rat C6 glioma cells, it was found to increase the DNA binding activity of
activator protein-1 (AP-1) transcription factors by up to two-fold. The effect
was time- and concentration dependent (38). Similar results have been observed
with human neuroblastoma cells (39). Glycogen synthase kinase can
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phosphorylate the protein c-jun, an effect which can inhibt AP-1 DNA binding
activity. Chen et al. (40) found that valproate can inhibit the kinase in
a concentration-dependent manner, suggesting that the observed
valproate-mediated increases in AP-1 binding to DNA are the results of
a reduction in the amount of phosphorylated c-jun. Experiments using human
neuroblastoma SH-SYSY cells supported this concept (40).

Another possible genomic site of action of valproate might be the
neuroprotective protein bcl-2. Chronic administration of valproate to rats
led to a substantial increase in the number of bcl-2 immunoreactive cells in
layers 2 and 3 of the frontal cortex (41). Bcl-2 seems to offer protection agains
conditions that induce neuronal degeneration (42, 43). An earlier study had
demonstrated that valproate can protect cultured cerebellar neurons in culture
from degeneration (44).

Valproate has been shown to alter B-adrenergic receptor function in rat C6
glioma cells. Chronic exposure reduced both the number of receptors and the
capacity of cell membranes to bind [*H]forskolin. In addition, the ability of
forskolin to stimulate CAMP production was impaired (45).

2Membrane Effects

Sodium Channels

There is evidence that vlproate can interfere with both use-dependent and
voltage-dependent Na* channels within the nervous system. Normally there is an
increase in the rate of high frequency firing of action potentials during a train, but
valproate can limit these increases. Moreover, the slow-down in the firing rate is
further reduced by depolarizing from hyperpolarized potentials (46). The use- and
voltage-dependency of the valproate effects are consistent with the pharmacology
of the anticonvulsant which is known to inhibit repetitive discharges during
Convulsions but to have little effect on normal nerve cell activity.

Nosek (47) measured changes in action potentials in the crayfish stretch
feceptor in the presence of valproate. There was a reduction in axon
“citability and a decrease in Na* and K* currents. Similar results were
Obtained when peripheral nerve fibers of Xenopus were used (48). Other
Workers have reported that valproate can significantly inhibit fast Na* currents
(49, 50), although Taverna et al. (51) failed to observe an effect of valproate up
0200 uM on fast Na* currents in acutely dissociated neocortical neurons.
HOWeVer, low concentrations of valproate (10-30 uM) markedly reduced the
Persistent fraction of the Na* current.
~ Adrenal chromaffin cells, which are derived from neural crest, can be grown
“}IIClllture. Bovine cells contain the a- and B,-subunit of voltage-dependent Na*
“lannels, as well as the nicotine-ion channel complex and voltage-dependent
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Ca’* channels. Yamamoto et al. (52) exposed bovine chromaffin cells to
valproate for up to six days. There was a time-dependent increase in the
binding of saxitoxin, a site 1 ligand, which could be abolished by the presence
of cycloheximide, a protein synthesis inhibitor. The presence of valproate also
potentiated the veratridine-induced influx of Na* and at the same time
potentiated the veratridine-induced Ca** influx. The valproate treatment also
increased the nicotine-induced Na* influx through the ion channel of the
nicotinic receptor. The mRNA for both the a- and the B-subunits of the Na*
channel was substantially increased by the valproate treatment. How can these
increases in Na™ channel expression after repeated valproate exposure be
explained in light of the evidence that acute administration leads to a reduction
in Na* influx? If there is a decrease in Na* entry into the cell via
voltage-sensitive channels, the cell might respond by synthesizing more of the
Na* channel protein, a process that could be considered an up-regulation. The
reported decreases in use- and voltage-dependent Na* currents induced by
valproate (46) are unlikely to be a direct effect of the drug on the Na "-channel
protein complex since valproate was unable to inhibit the binding of either
[*H] saxitoxin or [’H] BTX-B (53, 54). These ligands recognize Na *-channel
receptor sites 1 and 2, respectively. Accordingly, the most likely explanation is
that valproate, a hydrophobic fatty acid, perturbs the plasma membrane
adjacent ot the channel, interfering with Na* fluxes.

Potentation of GABA Responses

In cultured spinal cord neurons GABA-mediated inhibitory responses can
be measured, effects which were found by Macdonald and Bergey (55) to be
potentiated by valproate in a dose-depended manner (Fig. 2). The effects on
GABA were specific since valproate had no influence on either glycine of
glutamate responses. Further, valproate alone was found to exhibit 1o
inhibitory action. Harrison and Simmonds (56), on the other hand, saw
a potentiation of the responses to GABA only at very high concentratigns
when they used a rat cuneate afferent fiber preparation. Similar augmentation
of GABA responses have been obtained in the intact central nervous system
For instance, after an intravenous injection of valproate or after iontophoretic
application, the inhibitory effects of GABA were enhanced (57). Kerwin é! al.
(58) reported similar findings. Hayashi and Negishi (59) studied the effects of
GABA and valproate on carp retinal ganglion cells and observed that thh
suppressed spike discharges, actions that could be antagonized by bicuculline.
Further, the actions of valproate and GABA were additive. Similar results Wer
obtained by Baldino and Geller (60) after they applied valproate and GABA
simultaneously to cortical neurons and recorded greater inhibitory responses
than with GABA alone. However, when these investigators used hypothalamiC



353

neurons, valproate exhibited inconsistent actions, leading to the suggestion
that the effects of the drug are regionally specific within the brain (61). The
inhibitory effects of both GABA and muscimol on locus coerulus neurons were
enhanced by valproate (62). Similarly in the preoptic ara of the brain the
inhibitory action of GABA was heightened by valproate (63). In addition,
valproate increased the GABA-ipsp slope 54% in rat hippocampal slices,
indicating that the mechanism of action of the anticonvulsant might include an
augmentation of neuronal inhibition by GABA (64).
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~ In isolated frog primary afferent fibers valproate has been shown to
Increase the responsiveness to GABA and to reduce the ability of K+ and
excitatory amino acids to depolarize membranes (65). During in vivo
¢xperiments, Rowley et al. (66) observed that treatment of rats with valproate
enhanced hippocampal GABA release.

Despite these reports indicating that valproate might be able to augment
GABAergic mechanisms, experiments by Blume et al. (67) were unable to
confirm this and, in fact, appeared to suggest that valproate can sometimes
haV(? excitatory actions on neurons. Extracellular recordings were made from
tortical and hippocampal neurons in rats. Microiontophoretic application of
Valproate increased the spontaneous firing of the majority of neurons. GABA
¥as able to inhibit the effects of valproate application.

Excitatory Amino Acid Receptors

N One type of excitatory amino acid receptor in the brain is the
l'm.ethyl-D-aspartate (NMDA) receptor, the activation of which can lead to
onic  convulsions  (68). Antagonists at this receptor often possess
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anticonvulsant properties (69). Czuczwar et al. (70) showed that valproate
could suppress NMDA-induced seizures but that other anticonvulsants were
ineffective. In rat cerebral cortical slices valproate inhibited the
NMDA-stimulated release of [*H]noradrenaline (71). NMDA can induce
transient depolararizations in rat cortical pyramidal neurons which can be
inhibited by valproate (72). Valproate also decreased the NMDA-epsp slope by
14% 1n rat hippocampal slices (64).

Another type of excitatory amino acid neurotransmitter receptor is the
ionotropic AMPA receptor, whose activation leads to an influx of Na* ions
resulting in a depolarization of the neuron. Kiinig et al. (73), using slices of
human hippocampus incubated in a buffer containing 40 nM [*H]JAMPA,
reported that concentrations of valproate of 100 pM or greater inhibited the
binding of the ligand to AMPA recetors. These observations might have
clinical significance since therapeutic serum levels of valproate range between
350 and 700 uM ().

Although whole-brain levels of glutamate were unaffected by the acute
administration of valproate (11, 34, 74), most brain regions showed increases in
glutamate following chronic treatment (75, 13). Moreover, since aspartate
might play a role in excitatory neurotransmission, the observation that
valproate decreases mouse brain aspartate concentrations (76), an effect which
correlates with suppression of audiogenic seizures, might contribute to an
explanation of the mechanism of action of this drug. A later study found a good
correlation between the dose of valproate and the reduction in brain aspartate
levels (77, 78). Valproate also has been reported to (79) to inhibit the release of
aspartate from rat cortical slices (ICso = 100 uM).

Other Membrane Effects

Some of the effects of valproate on neuronal activity are not as clearly
dependent on GABA or excitatory amino acid respones. Zhang et al. (80), for
example, reported that the drug suppressed both simple and compl'ex
thalamocortical burst complex activity in brain slices. These activities
resembled absence seizure activity and tonic-clonic activity, respectively. Low
concentrations of valproate rapidly inhibited spontaneously firing cerebral
cortical neurons following intraperitoneal injections (81); and Salt et al. (82)
found that oral administration of valproate led to a reduction in the duration
of afterdischarges in the rat amygdala. Another study showed that valproatc
could produce a modest reduction in T-type Ca* currents in primary afferent
neurons over a concentration range 0.1—1 mM (83).

Hippocampal slices can be made to yield rhythmic, synchronous field
discharges if incubated under certaon conditions. Valproate reduced the
occurrence of these discharge (84). Franceschetti er al. (85) also used
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a hippocampal slice preparation and reported that valproate depressed
frequency potentation. Moreover, the drug inhibited spontaneous epileptiform
activity and after discharge effected by antidromic stimulation. Because of the
delayed action, these results suggest valproate does not block Na™ currents, as
phenytoin does, but perhaps activates Ca*-dependent K+ flux.

Even in the invertebrate nervous system, valproate produced
a hyperpolarization of Aplysia neurons which was accompanied by an increase
in K* conductance (86).

Valproate has been shown to alter B-adrenergic receptor function in rat C6
glioma cells. Chronic exposure reduced both the number of receptors and the
capacity of cell membranes to bind [3H]forskolin. In addition, the ability of
forskolin to stimulate cAMP production was impaired (87).

Antimigraine Activity

A major type of episotic headache is migraine. For many years the
prevailing notion was that in patients undergoin a migrainous attack certain
cerebral blood vessels underwent dilation, resulting in the characteristic pain.
However, investigators no longer believe that migraines are simply vascular
headaches. The raphe nucleus of the brainstem seems to play an major role in
the genesis of this type of headache. Pharmacological treatment of migraine
attacks usually means treating the pain, either with analgesics or with drugs
from the newer class of serotonin antagonists like sumatriptan. Yet agents
which prevent the development of migraines are also important in the overall
treatment available. One such drug is sodium valproate.

The first study to demonstrate that valproate might possess the bility to
prophylactically treat migraine headaches was carried out by Sorensen (88).
This was an open trial in which seventeen of eighteen patients obtained
a benefit from the administration of valproate. The first study to employ
a placebo was reported by Hering and Kuritzky (89) in which 86% of patients
sponded favorable to valproate treatment. In 1994 Jensen er al. (90)
performed a triple-blind, placebo-controlled trial during which 34 patients
Completed the study. Seventeen patients showed a clear reduction in migraine
frequency following valproate treatment. An open prospective investigation
Wa§ carried out by Lenaerts et al. (91) in which 56 patients suffering from
Varlf)us types of migraine were enrolled. Over a period of six months, patients
feceived an average of 928.5 mg sodium valproate each day which led to 80%
of these patients experiencing a reduced frequency of migraine by at least
°ne.-half. A larger, multicenter study, involving 90 patients found that 48%
achl‘?Ved a reduction in headache frequency if valproate was administered on
3 daily basis (92). An even larger trial two years later involved 176 patients and
“nfirmed the effectiveness of chronic vlproate treatment on migraines (93).
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The B-adrenergic receptor antagonist propanolol has been used successfully
in the prophylactic treatment of migraine (94). Kaniecki (95) initiated a study to
compare the relative effectiveness of valproate and propanolol as prophylactic
agents in treating migraine. Thirty-two patients completed the randomized,
single-blind, placebo-controlled trial which lasted 36 weeks. For valproate,
most patients eventually received 1.5 g per day and for propanolol most
patients eventually received 180 mg per day. Although migraine frequency was
reduced in 19% of patients receiving placebo, 66% of patients receiving
valproate and 63% of patients receiving propanolol reported a reduction in
headache frequency. Thus valproate appears equally effective as propanolol at
inhibiting the development of migraine headaches.

Valproate in Mood Disorders

Manic depression, or bipolar disorder, affects about one percent of the US
population and these patients are at considerable risk for suicide. Lithium has
been the drug of choice for the treatment of this disorder but serum levels have to
be monitored carefully owing to its low therapeutic index. The relationship
between the alleviation of bipolar symptoms and alterations in brain chemistry
by lithium is far from clear. Further, many patients do not respond to lithium
therapy (96), whereas others might show only partial longterm improvement (97)

A report by Lambert et al. (98) was one of the first to indicate valproate
might be useful in treating mood disorders. Later, Emrich et al. (99) observed
that out of five patients receiving valproate, four showed improvement in
symptoms of acute mania. Since then much stronger evidence for the effective
treatment of acute mania by valproate has been obtained by two clinical
studies which properly employed placebo groups (94, 2, 100). The first was
a randomized controlled trial in which 53% of a group of acutely manic
patients experienced at least a 50% reduction in symptoms over the course of
3 weeks. Only 11% of the patients taking a placebo showed a similar
improvement. The second of these randomized controlled trials yielded an
improvement rate of 48% for patients on valproate compared to 25%. of
patients on placebo. Weaker evidence has been put forward for the alleviation
of manic phase symptoms in bipolar disorder (101, 102). In a prospective
clinical trial of patients with refractive bipolar disorder, valproate together with
lithium was shown to have promise in treating the manic phase in one third of
the eighteen patients studied (103). A subgroup of patients with bipolar
disorder exhibit depression on occasion but these people are often
unresponsive to lithium (104). In a parallel-group, double-blind study of acute
mania certain patients who poorly responded to lithium treatment tended t0
exhibit symptoms of depression, whereas other patients showing signs of
depression were better responders to valproate administration (105).
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Recently valproate has begun to be used to treat both acute mania and
manic depression in some patients. As valproate appears to enhance the
GABAergic system and to interfere with Na* channel function, it is possible
the mood stabilizing properties of the drug can be explained this way.
However, glutamate function might be altered by valproate and account for its
effectiveness in treating certain affective disorders. Interestingly, Dixon and
Hokin (106) reported that both valproate and lithium stimulated glutamate
release from cortical slices which was accompanied by an accumulation of
inositol 1,4,5-triphosphate.

It has been estimated that up to 3% of the US population is susceptible
panic attacks (107). Evidence points to the idea that susceptible patients might
be helped with valproate treatment. In an open 7-week study by Primeau et al.
(108), administration of valproate led to an improvement in a number of
patients suffering from panic disorder. Keck et al. (109) reported that valproate
is useful against lactate-induced panic attacks and against spontaneous attacks.
Woodman and Noyes (110) have described a study involving twelve patients
with panic disorder who were administered valproate over a 6-week period.
Three-quarters of the patients exhibited a definite improvement in the
frequency of attacks and in general anxiety levels. The remaining patients
showed a moderate improvement. In a more recent trial, thirteen patients were
enrolled but three eventually dropped out (111). Valproate treament produced
a significant improvement in depression, anxiety and mood instability as well
as a marked reduction in the number of panic attacks.

Huntington’s disease is a genetic neurological disorder in which neurons in
the basal ganglia undergo a progressive degeneration. Since both GABA
Concentrations and the activity of glutamate decarboxylase were markedly
reduced in postmortem brains from patients, a clinical trial was initiated to test
the idea that valproate could alleviate neurological symptoms (112). The
double-blind study involved eight patients who received placebo or 1.5 g
valproate daily for one week followed by valproate and GABA (24.5 g) for
a f}lrther 18 to 21 days. No improvement in chorea severity, finger dexterity,
gait or speech was observed over the period of the trial.

TOXICOLOGY

Valproate is a widely used drug and is known to be reasonably safe and
often effective. Nevertheless, sometimes hepatotoxicity can occur and there has
N a number of fatalities, mainly at high doses (113, 114). Some of these
pat{ents exhibited microvesicular steatosis of the liver and encephalopathy. The
I8 of the fatalities might be explained by the effect of valproate on
Mitochondrial biochemical processes in hepatocytes.
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- In both humans and experimental animals treated with valproate,
a dicarboxylic aciduria was observed, indicating an effect on mitochondrial
B-oxidation of fatty acids (11). Since valproate is a branched chain fatty, it
might be expected to interfere with normal metabolic oxidations of fatty acids
in mitochondria. Also implicating mitochondria involvement was the presence
of a persistent hyperammonemia during valproate intoxication (116—118).
When isolated liver cels were studied, valproate clearly inhibited fatty acid
oxidationn (119, 120). Other studies using in vitro liver preparations were able
to corroborate the inhibitory actions of valproate on B-oxidation (121—123).
In addition to the effects on fatty acid oxidation, valproate inhibited fatty acid
synthesis and gluconeogenesis (119, 124). Other researchers reported that
valproate inhibited the urea cycle in hepatocytes (120, 125).

Some of the hepatotoxicity of valproate might be caused by metabolites
of the drug. CoA esters of several valproate derivatives have been isolated
(126, 127). In addition, a number of hydroxylation and dehydrogenation
products have been described (128, 129) which could contribute to liver
damage. Geber et al. (130) noticed a resemblance between the structure of
2-propylpent-4-enoate, a valproate metabolite, and the hepatotoxin methylene
cyclopropylacetate.

Chronic treatment of rats with valproat led to decreased respiration in both
liver and brain when either succinate or glutamate were substrates (131).
Subsequent studies have shown that repeated valproate administration
produces an inhibition of proton pumping ability by Complex IV of the inner
membrane of liver mitochondria. This results in a reduction of oxidative
phosphorylation (132).

CONCLUSIONS

Since it was shown to possess anticonvulsant properties almost forty
years ago, valproate has become an important therapeutic agent to control
several types of epilepsy. More recently the clinical uses of valproate have
expanded to include its use in the treatment of migraine headaches and m(.JO.d
disorders. We are still not certain of its mechanism of action and, indeed, 1t 18
possible that its different clinical uses rely on different mechanisms. The tW0
major targets for the action of valproate in the brain are the GABAerglC
neurotransmitter system and certain Na* channels involved in action potentlal
propagation. It is obviously possible that the pharmacological profile of
valproate depends on its action on both of these targets. At high doses
valproate can result in hepatic damage. There is evidence that disturbances m
mitochondrial metabolism within hepatocytes sometimes leads to irreversible
alterations in liver function.
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