Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 53 | Suppl. |
Tytuł artykułu

Optical lectin based biosensor as tool for bacteria identification

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biosensor techniques are based on biospecific interaction between the biological parts of biosensor with the analyte. In biosensor construction, antibodies are usually used for the detection of analytes such as microorganism, because of very strong and highly specific interaction. The disadvantages of this assay are a long time needed for antibody isolation and purification as well as difficult regeneration of biosensor chip. The use of lectins instead of antibodies could solve these problems because a several hundred lectins are commercially available and their stability in standard buffers is better compared to monoclonal antibodies. While antibody can only be used to detect that antigen it was designed for, lectin as low affinity molecule may bind several different pathogens. Using the discriminative effect of an artificial neural network the application of a lectin array will compensate for the lower specificity. Microbial surfaces bear many of the sugar residues capable of interacting with lectins. The ability of lectins to react with microbial glycoconjugates means that it is possible to employ them as probes and sorbents for whole cells, mutants and numerous cellular constituents and metabolites, and it makes them useful tools for identification or typing of bacteria. Lectins are attractive reagents for the clinical diagnostic laboratory because of their diverse specificity, commercial availability, a wide range of molecular weights, and their stability in standard buffers. The construction of lectin biosensor could be an advantage method for detection of pathogenic bacteria.
Wydawca
-
Rocznik
Tom
53
Numer
Opis fizyczny
p.23-27,fig.,ref.
Twórcy
autor
  • Lund University, S-221 00, Sweden
Bibliografia
  • Aabenhus R., S.O. Hynes, H. Permin, A.P. Moran and L.P. Andersen. 2002. Lectin typing of Campylobacter concisus. J. Clin. Microbiol. 40: 715.
  • Annuk H., S.O. Hynes, S. Hirmo, M. Mikelsaarand T. Wadstrom. 2001. Characterization and differentiation of lactobacilli by lectin typing. J. Med. Microbiol. 50: 1069.
  • Artault S., J.L. Blind, J. Delaval, Y. Dureuil and N. Gail lard. 2001. Detecting Listeria monocytogenes in food. Int. FoodHyg. 12: 23. Ashraf M.T. and R.H. Khan. 2003. Mitogenic lectins. Med. Sci. Monit. 9: 265.
  • Calderon A.M., G. Buck and RJ. Doyle. 1998. Lectin-microorganisms complexes. Lectins, Biology, Biochemistry, Clinical Biochemistry 12; (http://plab.ku.dk/tccbh/Lectinsl2/Calderon/paper.htm).
  • Davidson S.K., K.F. Keller and R.J. Doyle. 1982. Differentiation of coagulase-positive and coagulase-negative staphylococci by lectins and plant agglutinins. J. Clin. Microbiol. 15: 547.
  • De Boer E. and R.R. Beumer. 1999. Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol. 50: 119.
  • De Lucca A.J. 1984. Lectin grouping oí Bacillus thuringiensis serovars. Can. J. Microbiol. 19: 48.
  • Duverger E., N. Frison, A.C. Roche and M. Monsigny. 2003. Carbohydfate-lectin interaction assessed by surface plasmon resonance. Biochimie 85: 167.
  • Goepel W. 1991. Chemical sensing, molecular electronics and nanotechnology: interface technologies down to the molecular scale. Sens. Actual. B 4: 7.
  • Graham K., K.F. Keller, J. Ezzell and R.J. Doyle. 1984. Enzyme-linked lectinosorbent assay (ELLA) for detecting Bacillus anthracis. Eur. J. Clin. Microbiol. 3:210
  • Hamada S., K. Gill and H.D. Slade. 1977. Binding of lectins to Streptococcus mutans cells and type-specific polysaccharides, and effect on adherence. Infect. Immunol. 18: 708.
  • Holmskov U., P.B. Fischer, A. Rothmann and P. Hojrup. 1996. Affinity and kinetic analysis of the bovine plasma C-type lectin collectin-43 (CL-43) interacting with mannan. FEBS Letters 393: 314.
  • Hynes S.O., N. Broutet, E.S. Group, T. Wadstrom, M. Mikelsaar, P.W. O'Toole, J. Telford, L. Engstrand, S. Kami y a, A.F. Mentis and A.P. Moran. 2002. Phenotypic variation of Helicobacter pylori isolates from geographically distinct regions detected by lectin typing. J. Clin. Microbiol. 40: 227.
  • Hynes S.O., S. Hirmo, T. Wadstrom and A.P. Moran. 1999. Differentiation of Helicobacter pylori isolates based on lectin binding of cell extracts in an agglutination assay. J. Clin. Microbiol. 37: 1994.
  • Leonard P., S. Hearty, J. Brennan, L. Dunne, J. Quinn, T. Chakraborty and R.O. Kennedy. 2003. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Tech. 32: 3.
  • Liedberg B., C. Ny lander and I. Lundstrom. 1995. Biosensing with surface plasmon resonance - how it all started. Biosens. Bioelectron. 10:1.
  • Lis H. and N. Sharon. 1998. Lectins: carbohydrate specific protein that mediate cellular recognition. Chem. Rev. 98: 637.
  • Masarova J., E.S. Dey and B. Danielsson. 2004a. Lectins as prospective tools for bacteria identification using Biacore 3000. Biacore Nordic User Days, June 10-11, 2004, Uppsala, Sweden.
  • Masarova J., W.A. Al-Soud, E.S. Dey, T. Wadstrom and B. Danielsson. 2004b. Lectin biosensor for bacteria detection. CSL/JIFSAN Symposium "Novel Application of Analytical Methods in Food Safety", 30 June-2 July, 2004, York, United Kingdom.
  • McSweegan F. and T.G. Pistole. 1982. Interaction of the lectin limulin with capsular polysaccharides from Neisseria meningitidis and Escherichia coli. Biochem. Biophys. Res. Commun. 106: 1390.
  • Mecklenburg M., J. Svitel, F. Winquist, J. Gang, K. Orn stein, E. Dey, X. Bin, E. Hedborg, R. Norrby, H. Arwin, I. Lundstrom and B. Danielsson. 2002. Differentiation of human serum samples by surface plasmon resonance monitoring of the integral glycoprotein interaction with a lectin panel. Anal. Chitn. Acta 459: 25.
  • Mislovicova D., J. Masarova, J. Svitel, R. Mendichi, L. Soltes, P. Gemeiner and B. Danielsson. 2002. Neoglycoconjugates of mannan with bovine serum albumin and their interaction with concanavalin A. Bioconjug. Chem. 13: 136
  • Okazaki I., Y. Hasegawa, Y. Shinohara and T. Kamasaki. 1995. Determination of the interactions between lectins and glycoproteins by surface plasmon resonance. J. Mol. Recog. 8: 95.
  • Quinn J.G. and R. O'Kennedy. 2001. Detection of whole celhantibody interaction using BIAcore's SPR technology. BIAJ. 1: 22.
  • Reeder W.J. and R.D. Estedt. 1971. Study of the interaction of concanavalin A with staphylocccal teichoic acids. J. Immunol. 196: 334.
  • Rich R.L. and D.G. Myszka. 2000. Advances in surface plasmon resonance biosensor analysis. Curr. Opin. Biotechnol. 11:54.
  • Seyhi R.S. 1994. Transducer aspects of biosensors. Biosens. Bioelectron. 9: 243.
  • Sharon N. and I. Ofek. 2001. Safe as mother's milk: Carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconjugate J. 17: 659.
  • Singh J.S. and R.J. Doyle. 1993. Salt-enhanced enzyme-linked lectinosorbent assay (SELLA). J. Microbiol. Meth. 17: 61
  • Toze S. 1999. PCR and the detection of microbial pathogens in water and wastewater. Water Res. 33: 3545.
  • Varki A. 1993. Biological roles of oligosaccharides: all theories are correct. Glycobiology 3: 97.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-21cbe1cc-2aa4-465d-80fa-d2e25d628e05
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.