Warianty tytułu
Badania 'in vitro' nad wrazliwoscia grzyba Penicillium italicum, sprawcy zgnilizny owocow cytrusowych po okresie zbiorow w Jordanii na fungicydy oraz ich mieszaniny
Języki publikacji
Abstrakty
In this study we evaluated "in vitro" the efficacy of six chemical fungicides and their mixtures as a strategy for the control of Penicillium italicum. The antifungal efficacy against four P. italicum isolates of thirty-one concentrations (0.01-3000 μg/ml) of each of the tested fungicides (Vydan, Blin exa, Canvil, Ranvil, Benomyl and Topsin M), in addition to six combined concentrations from each of ten fungicide mixtures were tested using agar well diffusion method. Regression analysis, one way ANOVA, and Post Hoc Multiple comparisons were carried out to test the significance of these treatments. Our results showed that benomyl completely inhibited the growth of tested isolates (Pi.1; Pi.3; Pi.5; and Pi.6) with MIC values of: 1000; 300; 150 and 40 μg/ml respectively. Canvil as compared to Blin exa, Ranvil and Vydan (no complete inhibition) showed high efficacy against isolates Pi.1 and Pi.5 (MIC values of 5 and 25 μg/ml respectively). The mixtures of Blin exa/Vydan and Topsin M/Canvil were the only mixtures that generated synergistic effects against tested isolates at all tested concentrations. The above mentioned mixtures showed at the first four tested combined concentrations (50:50, 100:100, 100:500 and 500:1000 μg/ml) either the largest inhibition zones (in the range of 47±1.40 mm to 51±1.49 mm) or complete inhibition of fungal growth at the last two (1000:1000 and 1000:2000 μg/ml) combined concentrations. The mixtures of Blin exa/Canvil and Blin exa/Ranvil as compared to the effect of each as singles showed additive effects against tested isolates. The mixtures of Benomyl/Vydan; Benomyl/Ranvil; Benomyl/Blin exa; Topsin/Vydan and Topsin/Blin exa (i. e. mixture of benzimidazole and DMI members) all generated antagonistic effects against tested isolates.
Oceniano "in vitro" skuteczność sześciu fungicydów oraz ich mieszanin w zwalczaniu grzyba Penicillium italicum. Zbadano przeciwgrzybowe działanie w stosunku do czterech izolatów P. italicum trzydziestu jeden koncentracji (0.01-3000 μg/ml) każdego fungicydu z osobna (Vydan, Blin exa, Canvil, Ranvil, Benomyl i Topsin M) oraz sześciu koncentracji tych samych fungicydów zastosowanych w formie mieszanin, stosując metodę dyfuzji w agarze. Wykorzystano analizę regresji, jednokierunkową metodę ANOVA oraz wielokrotne porównania Post Hoc do oceny istotności różnic zastosowanych kombinacji. Wyniki przeprowadzonych badań wykazały, że benomyl całkowicie hamował wzrost kolonii testowanych izolatów (Pi.1; Pi.3; Pi.5 oraz Pi.6) odpowiednio przy minimalnej inhibicyjnej koncentracji rzędu: 1000; 300; 150 i 40 μg/ml. Fungicyd Canvil w porównaniu do fungicydów Blin exa, Ranvil i Vydan (gdzie obserwowano brak całkowitej inhibicji wzrostu kolonii grzyba) wykazał wysoką skuteczność przeciwko izolatom Pi.1 oraz Pi.5, a wielkości minimalnej inhibicyjnej koncentracji wynosiły odpowiednio 5 i 25 μg/ml. Mieszaniny fungicydów Blin exa/Vydan oraz Topsin M/Canvil były jedynymi mieszaninami wykazującymi synergistyczne działanie we wszystkich zastosowanych koncentracjach przeciwko testowanym izolatom grzyba. Wyżej wymienione mieszaniny fungicydów zastosowane w przypadku czterech pierwszych koncentracji (50:50, 100:100, 100:500 oraz 500:1000 μg/ml) powodowały największą strefę zahamowania wzrostu kolonii patogena (w zakresie od 47±1.40 mm do 51±1.49 mm) lub całkowitą inhibicję dla dwóch ostatnich koncentracji (1000:1000 oraz 1000:2000 μg/ml) Porównując skuteczność mieszaniny fungicydów Blin exa/Canvil i Blin exa/Ranvil do skuteczności każdego z zastosowanych preparatów oddzielnie stwierdzono, że mieszaniny te wykazały addytywne działanie przeciwko badanym izolatom patogena. Mieszaniny fungicydów: Benonyl/Vydan; Benomyl/Ranvil; Benomyl/Blin exa; Topsin M/Vydan oraz Topsin M/Blin exa (jak na przykład mieszaniny benzymidazoli z prepararatami należącymi do grupy DMI) wykazywały antagonistyczne działanie w stosunku do testowanych izolatów P. italicum.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
77-86
Opis fizyczny
p.77-86,fig.,ref.
Twórcy
Bibliografia
- Asai K., Tsuchimori N., Okonogi K., Perfect J. R., Gotoh O., Toshida Y. 1999. Formation of azole resistant Candida albicans by mutation of sterol 14-demethylase P450. Antimicrob. Agents Chemother 14: 1163-1169.
- Barkai-Golan R. 2001. Postharvest Diseases of Fruits and Vegetables. Development and control. Elsevier Science, 418 pp.
- Bhattacharjee I., Chatterjee S. K., Chatterjee S., Chandra G. 2006. Antibacterial potentially of Argemone mexicana solvent extracts against some pathogenic bacteria. Mem Inst Oswaldo Cruz. 101 (6): 645-648.
- Bouzerda L., Boubaker H., Boudyach E. H., Akhayat O., Bin Aoumar A. A. 2003. Selection of antagonistic yeasts to green mold disease of citrus in Morocco. Food. Agri. Environ. 1 (4): 215-218.
- Cove D. J. 1966. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans.Biochem. Biophys. Acta 113: 51-56.
- Dalgie O. D. F. 2005. The effect of fungicide benomyl (benlate) on growth and mitosis in onion (Allium capa L.) root apical meristem. Acta Biol Hung. 56 (1-2): 119-128.
- Delye C., Bousset I., Corio-Costet M. F. 1998. PCR cloning and detection of point mutations in the eburicol 14α demethylase (CYP51) gene from Erysiphe graminis f. sp. Hordei, a recalcitrant fungus. Curr. Genet. 34: 399-403.
- De Waard M. A., Van Nisterlrooy J. G. M. 1990. Stepwise development of laboratory resistance to DMI-fungicides in Penicillium italicum.Neth. J. Plant Pathol. 96 (6): 321-329.
- Georgopoulos S. G., Skylakakis G. 1986. Genetic variability in the fungi and problem of fungicide resistance. Crop Prot. 5: 299-305.
- Gopi R., Sridharan R., Somasundaram R., Lakshmanan G. M. A., Panneerselvam R. 2005. Growth and photosynthetic characteristics as affected by triazoles in Amorphophallus campanulatus.Gen. Appl. Plant Physiol. 31 (3-4): 171-180.
- Hamamoto H., Hasegawa K., Nakaune R., Lee Y. J., Makizumi Y., Akutsu K., Hibi T. 2000. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum.Appl. Environ. Microbiol. 66: 3421-3426.
- Hayashi K., Schoonbeek H., De Waard M. A. 2002. Expression of the ABC transporter BcatrD from Botrytis cinerea reduces sensitivity to sterol demethylation inhibitor fungicides. Pestic. Biochem. Physiol. 73: 110-121.
- Ismail M., Zhang J. 2004. Postharvest citrus diseases and their control. Outlooks on Pest Manage 15 (1): 29-35.
- Kalamarakis A. E., Ziogas B. N., Georgopoulos S. G. 1987. Resistance to ergosterol biosynthesis inhibitor in Nectia haematococca var. cucurbitae.Chem. Control Newsl. 8: 18-19.
- Kanan G. J. M. 2008. In vitro evaluation of Penicillium digitatum Sacc strains sensitivity to various fungicides from Jordan. Pakistan. J. Biol. Sci. 11 (12): 1517-1529.
- Lopez-Garcia B., Veyrat A., Perez-Paya E., Gonzalez-Candelas L., Marcos J. F. 2003. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and Imazalil against postharvest fungal pathogens. Inter. J. Food Microbiol. 89: 163-170.
- Ma Z., Proffer T. J., Jacobs J. L., Sundin G. W. 2006. Overexpression of the 14α-Demethlase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii.Appl. Environ. Microbiol. 72: 2581-2585.
- McGrath M. T. 2001. Fungicide resistance in Cucurbit Powdery Mildew: experiences and challenges. Plant Dis. 85: 236-245.
- Ndukwe I. G., Habila J. D., Bello I. A., Adeleye E. O. 2006. Phytochemical analysis and antimicrobial screening of crude extracts from the leaves, stem bark and root bark of Ekebergia senegalensisA. Juss. Afri. J. Biotech. 5 (19): 1792-1794.
- Nostro A., Germano M. P., D'Angelo V., Marino A., Cannatelli M. A. 2000. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Letters Appl. Microbiol. 30: 379-384.
- Ogundare A. O., Adetuyi F. C., Akinyosoye F. A. 2006. Antimicrobial activities of Vernonia tenoreana.Afri. J. Biotech. 5 (18): 1663-1668.
- Palou L., Smilanick J. L., Crisosto C. H., Mansour M. 2001. Effect of gaseous ozone exposure on the development of green and blue molds on cold stored citrus fruit. Plant. Dis. 85: 632-638.
- Plaza P., Usall J., Teixido N., Vinas I. 2003. Effect of water activity and temperature on germination and growth of Penicillium digitatum P. italicum and Geotrichum candidum.J. Appl. Microbiol. 94: 549-554.
- Plaza P., Sanbruno A., Usall J., Lamarca N., Torres R., Pons J., Vinas I. 2004. Integration of curing treatments with degreening to control the main postharvest diseases of Calementine mandarins.Post. Biol. Tech. 34 (1): 29-37.
- Pramila T., Dubey N. K. 2004. Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Post. Biol. Tech. 32: 235-245.
- Samson R. A., Seifert K. A., Kuijpers A. F. A., Houbraken J. A. M. P., Frisvad J. C. 2004. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Studies in Mycol. 49: 175-200.
- Savocchia S., Stummer B. E., Wicks T. J., Van Heeswijck R., Scott E. S. 2004. Reduced sensitivity of Uncinula necator to sterol demethylation inhibiting fungicides in southern Australian vineyards. Aust. Plant Pathol. 33 (4): 465-473.
- Shaw M. W. 1993. Theoretical analysis of the effect of interacting activities on the rate of selection for combined resistance to fungicide mixtures. Crop Prot. 12: 120-125.
- Siddiqui Z. S. 1999. Effect of systemic fungicides on total protein carbohydrate and phenolic contents of Solanum melongena and Avena sativa.Appl. Ent. Phytopath. 64: 17-22.
- Sijaona M. E. R., Mansfield J. W. 2001. Variation in the response of cashew genotypes to the targeted application of fungicide to flower panicles for control of powdery mildew disease. Plant Pathol. 50: 244-248.
- Spencer F., Chi L., Zhu M. X. 1998. Biochemical characterization of benomyl inhibition on endometrial growth during decidualization in rats. Adv. Exp. Med. Biol. 444: 163-169.
- Stinger A., Wright M. A. 2006. The toxicity of Benomyl and some related 2-substituted benzimidazoles to the earthworm Lumbricus terrestris.Pest. Sci. 7: 459-464.
- Sugiura H., Hayashi K., Tanaka T., Takenaka M., Uesugi Y. 2006. Mutual antagonism between sterol demethylation inhibitors and phosphorothiolate fungicides on Pyricularia oryzae the implications for their mode of action. Pest. Sci. 39: 193-198.
- Surviliene E., Dambrauskiene E. 2006. Effect of different active ingredients of fungicides on Alternaria spp. Growth in vitro. Agro. Res. 4 (special issue): 403-406.
- Tsuda M., Itoh H., Kato S. 2004. Evaluation of the systemic activity of simeconazole in comparison with that of other DMI fungicides. Pest Manage. Sci. 60 (9): 875-880.
- Valiuskaite A., Surviliene E., Lugauskas A., Levinskaite L. 2006. Ecological aspects of distribution of potential toxin-producing micromycetes on stored apple fruit. Ekologija 3: 60-63.
- Van Tuyl J. M. 1977. Genetic aspects of resistance to imazalil in Aspergillus nidulans.Neth. J. Plant Pathol. 83 (1): 169-176.
- Zamin S. S., Soaliha A., Shaukat S. S. 1999. Effect of systemic fungicide (Topsin-M) and inscticide (Dimecron) on germination, seedling growth and phenolic content of Pennisetum Americanum L.Pakistan J. Biol. Sci. 2 (1): 182-184.
- Zhang H. Y., Fu C. X., Zheng X. D., He D., Shan L. J., Zhan X. 2004. Effect of Cryptococcus laurentii (Kufferath) skinner in combination with sodium bicarbonate on biocontrol of post harvest green mold decay of citrus fruit. Bot. Bull. Acad. Sinica 45:159-164.
- Zwiers L., Stergiopoulos I., Van Nistelrooy J. G. M., De waard M. A. 2002. ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola.Antimicrob. Agents Chemother. 46: 3900-3906.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-204ccac3-9f62-4041-8d2e-919b28a5aeff