Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 48 | 2 |
Tytuł artykułu

Mg2plus ions do not induce expansion of the melted DNA region in the open complex formed by Escherichia coli RNA polymerase at a cognate synthetic Pa promoter. A quantitative KMnO4 footprinting study

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Footprinting studies of prokaryotic open transcription complexes (RP O), based on oxidation of pyrimidine residues by KMnO4 and/or OsO4 at a single oxidant dose, have suggested that the extent of DNA melt ing in the tran scrip tion bub ble re gion in­creases in the presence of Mg2+. In this work, quantitative KMnO4 footprinting in func tion of the ox i dant dose of RPo, us ing EscherichiacoliRNA poly mer ase (Es7 ) at a fully func tional syn thetic pro moter Pa hav ing -35 and -10 con sen sus hexamers, has been used to de ter mine in di vid ual rate con stants of ox i da tion of T res i dues in this re­gion at 37° C in the ab sence of Mg2+ and in the pres ence of 10 mM MgCl2, and to eval u- ate there from the ef fect of Mg on the ex tent of DNA melt ing. Pop u la tion dis tri bu­tions of end-labeled DNA frag ments cor re spond ing to ox i dized Ts were quan ti fied and an a lyzed ac cord ing to the sin gle-hit ki netic model. Pseudo-first or der re ac tiv ity rate con stants, kx, thus ob tained dem on strated that Mg2+ ions bound to RPo merely en­hanced the re ac tiv ity of all 11ox i diz able thymines be tween the +3 and -11 pro moter sites by a po si tion-dependent fac tor: 3-4 for those lo cated close to the tran scrip tion start point +1 in ei ther DNA strand, and about 1.6 for those lo cated more dis tantly there from. On the ba sis of these ob ser va tions, we con clude that Mg2+ ions bound to RPo at Pa do not in flu ence the length of the melted DNA re gion and pro pose that the higher re ac tiv ity of thymines re sults mainly from lower lo cal re pul sive elec tro static bar ri ers to MnO4- dif fu sion around carboxylate bind ing sites in the cat a lytic cen ter of RPo and pro moter DNA phos phates.
Wydawca
-
Rocznik
Tom
48
Numer
2
Opis fizyczny
p.495-510,fig.
Twórcy
autor
  • Polish Academy of Sciences, A.Pawinskiego 5A, 02-106 Warsaw, Poland
Bibliografia
  • 1.Springgate, C.F. & Loeb, L.A. (1975) On the fidelity of transcription by Escherichia coliribonucleic acid polymerase. J. Mol. Biol. 97, 577-591.
  • 2.Krakow, J.S., Rhodes, G. & Jovin, T.M. (1976) RNA polymerase: Catalytic mechanisms and inhibitors; in RNA Polymerase (Losick, R. & Chamberlin, M., eds.) pp. 127-157, Cold Spring Harbor Laboratory Press, New York.
  • 3.Wu, C.-W. & Goldthwait, D.A. (1969) Studies on nucleotide binding to the ribonucleic acid polymerase by a fluorescence technique. Biochemistry 8, 4450-4458.
  • 4.Koren, R. & Mildwan, A.S. (1977) Magnetic resonance and kinetic studies of the role of divalent cation activator of RNA polymerase from Escherichia coli. Biochemistry 16, 241-249.
  • 5.Burgess, P.M.J. & Eckstein, J. (1978) Absolute configuration of diastereoisomers of adenosine 5'-O-(1-thio-triphosphate); Consequences for the stereochemistry of polymerization by DNA-dependent RNA polymerase from Escherichia coli. Proc. Natl Acad. Sci. U.S.A. 75, 4798-4800.
  • 6.Szafranski, P., Smagowicz, W.J. & Wierzchowski, K.L. (1985) Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments and nucleotides interaction. Acta Biochim. Polon. 32, 329-349.
  • 7.Sousa, R., Chung, Y.J., Rose, J.P. & Wang, B.-C. (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature 364, 593-599.
  • 8.Zaychikov, E., Martin, E., Denissova, L., Kozlov, M., Markovtsov, V., Kashlev, M., Heumann, H., Nikiforov, V., Goldfarb, A. & Mustaev, A. (1996) Mapping of catalytic residues in the RNA polymerase active center. Science 273, 107-109.
  • 9.Zhang, G., Campbell, E., Minakhin, L., Richter, C., Severinov, K. & Darst, S. (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell98, 811-824.
  • 10.Suh, W.-C., Leirmo, S. & Record, Jr., M.T. (1992) Roles of Mg2+ in the mechanism of formation and dissociation of open complexes between Escherichia coli RNA polymerase and the lambdaPR promoter: Kinetic evidence for a second open complex requiring Mg2+. Biochemistry 31, 7815-7825.
  • 11.Suh, W.-C., Ross, W. & Record, Jr., M.T. (1993) Two open complexes and a requirement for Mg2+ to open the lambdaPR transcription start site. Science 259, 358-361.
  • 12.Craig, M.L., Suh, W.-C. & Record, Jr., M.T. (1995) HO and DNase I probing of E70 RNA polymerase-lambdaPR promoter open complexes: Mg+2 binding and its structural consequences at the transcription start site. Biochemistry 34, 15624-15632.
  • 13.Zaychikov, E., Denissova, L., Meier, T., Gotte, M. & Heumann, H. (1997) Influence of Mg2+ and temperature on formation of the transcription bubble. J. Biol. Chem. 272, 2259-2267.
  • 14.deHaseth, P.L. & Helmann, J.D. (1995) Open complex formation by Escherichia coli RNA polymerase: The mechanism of polymerase-induced strand separation of double helical DNA. MicroReview Mol. Microbiol. 16, 817-824.
  • 15.deHaseth, P.L., Zupancic, M.L. & Record, Jr., M.T. (1998) RNA polymerase-promoter interactions: The comings and goings of RNA polymerase. J. Bacteriol. 180, 3019-3025.
  • 16.Chen, Y.-F. & Helmann, J.D. (1997) DNA- melting at the Bacillus subtilis flagellin promoter nucleates near -10 and expands unidirectionally. J. Mol. Biol. 267, 47-59.
  • 17.Meier, T., Schickor, P., Wedel, A., Cellai, L. & Heumann, H. (1995) In vitro transcription close to the melting point of DNA: Analysis of Thermatoga maritima RNA polymerase-promoter complexes at 75deg;C using chemical probes. Nucleic Acids Res. 23, 988-994.
  • 18.Tsodikov, O.V., Craig, M.L., Saecker, R.M. & Record, Jr., M.T. (1998) Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformation changes in protein-DNA complexes; Application to DNA opening by E70 RNA polymerase. J. Mol. Biol. 283, 757-769.
  • 19.Lozinski, T., Markiewicz, W.T., Wyrzykiewicz, T.K. & Wierzchowski, K.L. (1989) Effect of the sequence-dependent structure of the 17 bp AT spacer on the strength of consensus-like E. coli promoters in vivo. Nucleic Acids Res. 17, 3855-3863.
  • 20.Lozinski, T., Adrych-Rozek, K., Markiewicz, W.T. & Wierzchowski, K.L. (1991) Effect of DNA bending in various regions of a consensus-like Escherichia coli promoter on its strength in vivo and structure of the open complex in vitro. Nucleic Acids Res. 19, 2947- 2953.
  • 21.Lozinski, T. & Wierzchowski, K.L. (1996) Effect of reversed orientation and length of AnTn DNA bending sequences in the -35 and spacer domains of a consensus-like Escherichia coli promoter on its strength in vivo and gross structure of the open complex in vitro. Acta Biochim. Polon. 43, 265-280.
  • 22.Kolasa, I. (2001) Effect of AnF255>Tn DNA bending tracts on kinetics of transcription initiation in vitro. Ph.D. Thesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa (in Polish).
  • 23.Roe, J.-H., Burgess, R.R. & Record, Jr., M.T. (1984) Kinetics and mechanism of the interaction of Escherichia coli RNA polymerase with thelPR promoter. J. Mol. Biol. 176, 495-521.
  • 24.Roe, J.-H., Burgess, R.R. & Record, Jr., M.T. (1985) Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-lambdaPR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening. J. Mol. Biol. 184, 441-453.
  • 25.Buc, H. & McClure, W.R. (1985) Kinetics of open complex formation between Escherichia coli RNA polymerase and lacUV5 promoter. Biochemistry 24, 2712-2723.
  • 26.Duval-Valentin, G. & Ehrlich, R. (1987) Dynamic and structural characterization of multiple steps during complex formation between E. coli RNA polymerase and the tetR promoter from pSC101. Nucleic Acids Res. 15, 575-594.
  • 27.Lozinski, T. & Wierzchowski, K.L. (2001) Effect of Mg2+ on kinetics of oxidation of pyrimidines in duplex DNA by potassium permanganate. Acta Biochim. Polon. 48, 511-523.
  • 28.Burgess, R.R. & Jendrisak, J.J. (1975) A procedure for the rapid, large-scale purification of Escherichia coli DNA-dependent RNA polymerase involving polymin P precipitation and DNA-cellulose chromatography. Biochemistry 14, 4634-4638.
  • 29.Sternbach, H., Engelhardt, R. & Lesius, A.G. (1975) Rapid isolation of highly active RNA polymerase from Escherichia coli and its subunits by matrix-bound heparin. Eur. J. Biochem. 60, 51-55.
  • 30.Sasse-Dwight, S. & Gralla, J.D. (1989) KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 264, 8074- 8081.
  • 31.Sasse-Dwight, S. & Gralla, J.D. (1991) Footprinting protein-DNA complexes in vivo. Methods Enzymol. 208, 146-168.
  • 32.Hayatsu, H. & Ukita, H. (1967) The selective degradation of pyrimidines in nucleic acids by permanganate oxidation. Biochem. Biophys. Res. Commun. 29, 556-561.
  • 33.Borowiec, A., Zhang, L., Sasse-Dwight, S. & Gralla, J.D. (1987) DNA supercoiling promotes formation of a bent repression loop in lac DNA. J. Mol. Biol. 196, 101-111.
  • 34.Ide, H., Kow, Y.W. & Wallace, S.S. (1985) Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res. 13, 8035-8052.
  • 35.Helmann, J.D. & deHaseth, P.L. (1999) Protein-nucleic acid interactions during open complex formation investigated by systematic alternation of the protein and DNA binding partners. Biochemistry 38, 5959-5967.
  • 36.Mustaev, A., Kozlov, M., Markovtsov, V., Zaychikov, E., Denissova, L. & Goldfarb, A. (1997) Modular organization of the catalytic center of RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 94, 6641-6645.
  • 37.Darst, S.A., Polyakov, A., Richter, C. & Zhang, G. (1998) Structural studies of Escherichia coli RNA polymerase; in Mechanisms of Transcription. Cold Spring Harbor Symposia on Quantitative Biology (Stillman, B., ed.) vol. 63, pp. 269-276, Cold Spring Laboratory Press, Cold Spring Harbor, New York.
  • 38.Finn, R.D., Orlova, E.V., Gowen, B., Buck, M. & van Heel, M. (2000) Escherichia coli RNA polymerase core and holoenzyme structures. EMBO J. 19, 6833-6844.
  • 39.Naryshkin, N., Revyakin, A., Kim, Y., Mekler, V. & Ebright, R. (2000) Structural organization of the RNA polymerase-promoter open complex. Cell 101, 601-611.
  • 40.Strainic, Jr., M.G., Sullivan, J.J., Velevis, A. & deHaseth, P.L. (1998) Promoter recognition by Escherichia coli RNA polymerase: Effects of the UP element on open complex formation and promoter clearance. Biochemistry 37, 18074-18080.
  • 41.Juang, Y.-L. & Helmann, J.D. (1994) A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. J. Mol. Biol. 235, 1470-1488.
  • 42.Malhotra, A., Severinova, E. & Darst, S.A. (1996) Crystal structure of a 70 subunit fragment from E. coli RNA polymerase. Cell 87, 127-136.
  • 43.Misra, V.K. & Draper, D.E. (1999) The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson-Boltzman theory. J. Mol. Biol. 294, 1135-1147.
  • 44.Palecek, E. (1992) Probing DNA structure with osmium tetraoxide complexes in vitro. Methods Enzymol. 212, 139-155.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-1d0b22e7-feaf-49c8-9561-edf898a53678
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.