Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 54 | 2 |
Tytuł artykułu

Effect of turbulent mixing on the marine plankton vertical distribution: model simulations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of the turbulent mixing processes within fine structure of hydrophysical field on the prey and predator biomass is presented. The calculations were made on the basis of an one-dimensional prey-predator ecosystem model on the assumption of an absolutely stable vertical distribution of the average sea water density and that vertically intermittent layer are horizontally homogeneous. This model was tested with data obtained from the southern Gdansk Gulf (Baltic Sea). The vertical distributions of temperature and salinity fields were taken as initial conditions for various simulations. The numerical simulations were computed for different values of the wind speed. This study reveals that an intensity of the layer-mixing increase with the increase of the wind speed and duration of the turbulent disturbance. For low values of wind speed (U₁₀ < 2 m s⁻¹) and for short time of action of hydrodynamic sources of mixing (tₜ < 60 min.), fine-scale interlayering is not created in investigated case. It is also shown that the thicker the layer, the smaller the structural anomaly. The presented results demonstrate that the dynamic processes are responsible for the shape of vertical profiles of investigated characteristics to the same extent as physiological processes. Hydrodynamic conditions play a basic role where the microstructure of investigated functions is concerned.
Wydawca
-
Rocznik
Tom
54
Numer
2
Opis fizyczny
p.215-230,fig.,ref.
Twórcy
  • Polish Academy of Sciences, Powstancow Warszawy 55, PL-81-712 Sopot, Poland
Bibliografia
  • Caparroy P., Carlotti F. 1996 – A model for cartia tonsa: effect of turbulence and consequences for the related physiological processes – J. Plankton Res., 18: 2139–2177.
  • Davis C.S., Flierl G.R., Wiebe P.H., Franks P.J.S. 1991 – Micropatchiness, turbulence and recruitment in plankton – J. Marine Res., 49: 110–151.
  • Dower J., Miller T.J., Leggett W.C. 1997 – The role of microscale turbulence in the feeding ecology of larval fish – Adv. Marine Biol., 31: 169–220.
  • Druet C., Zieliński A. 1994 – Modelling the fine-structure of the phytoplankton concentration in a stable stratified sea – Oceanologica Acta, 17 (1): 79–88.
  • Druet C. 2003 – The fine structure of marine hydrophysical fields and its influence on the behaviour of plankton: an overview of some experimental and theoretical investigations – Oceanologia, 45: 517–555.
  • Dzierzbicka-Głowacka L. 2000 – Mathematical modelling of the biological processes in the upper layer of the sea – Dissertation and monograph 13, Institute of Oceanology PAS, Sopot, Poland. 124 pp.
  • Dzierzbicka-Głowacka L. 2004 – Growth and development of copepodite stages of Pseudocalanus spp. – J. Plankton Res., 26: 49–60.
  • Dzierzbicka-Głowacka L. 2005 – A numerical investigation of phytoplankton and Pseudocalanus elongatus dynamics in the spring bloom time in the Gdańsk Gulf – J. Marine Sys., 53: 19–36.
  • Dzierzbicka-Głowacka L. 2006 – Encounter rate in plankton – P. J. Environ. Stud. 15 (2): 243–257.
  • Evans G.T. 1989 – The encounter speed of moving predator and prey – J Plankton Res., 11: 415–417.
  • Granata T.C., Dickey T.D. 1991 – The fluides mechanics of copepod feeding in a turbulent flow: a theoretical approach – Prog. Oceanogr., 26: 243–261.
  • Gregg M.C. 1989 – Scaling turbulent dissipation in the thermohaline – J. Geophys. Res. 94: 9684–9698.
  • Kiørboe T. 1993 – Turbulence, phytoplankton cell size, and the structure of pelagic food webs – Adv. Marine Biol., 29: 1–72.
  • Kiørboe T., MacKenzie B.R. 1995 – Turbulence-enhanced prey encounter rates in larval fish: effects of spatial scale, larval behaviour and size – J. Plankton Res., 17: 2319–2331.
  • Kiørboe T., Saize E. 1995 – Planktivorous feeding in calm and turbulent environments with emphasis on copepods – Mar. Ecol. Prog. Ser., 122: 135–145.
  • Kotta I., Kotta J. 2001 – Vertical migrations of mysids in the Gulf of Riga – Proc. Estonian Acad. Sci. Biol. Ecol. 50: 248–255.
  • Lough R.G., Mountain D.G. 1996 – Effect of small-scale turbulence on feeding rates of larval cod and haddock in stratified water on Georges Bank – Deep-Sea Res. II 43: 1745–1772.
  • Laurence G.C. 1985 – A raport on the development of stochastic models of food limited growth and survival cod and haddock larvae. (In: Growth and survival of larval fishes in relation to the trophodynamics of Georg Bank cod and handdock, Eds: G. C. Laurence and R.G. Lough ) – NOAA Technical Memorandum NMFS F/NEC–36, Woods Hole, pp 83–150.
  • MacKenzie B.R., Leggett W.C. 1991 – Quantifying the contribution of small-scale turbulence to the encounter rates between laval fish and their zooplankton prey: effects of wind and tide – Mar. Ecol. Prog. Ser., 73: 149–160.
  • MacKenzie B.R., Miller T.J., Cyr S., Leggett W.C. 1994 – Evidence for a domeshaped relationship between turbulence and larval fish ingestion rates – Limnol. Oceanogr., 39: 1790–1799.
  • Massel S.R. 1996 – Ocean surface waves: their physics and prediction – World Scientific Publ Singapore
  • Miller T.J., Crowder L.B., Rice J.A., Marshall E.A. 1988 – Larval size and recruitment mechanisms in fishes: toward a conceptual framework – Can. J. Fish. Aqu. Sci., 45: 1657–1670.
  • Monin A.S., Ozmidov R.V. 1981 – Oceanic turbulence – Gidrometeoizdat, Leningrad, 320 pp, (in Russian).
  • Osborn T.R. 1980 – Estimates of the local rate of vertical diffusion from dissipation measurements – J. Phys. Oceanogr., 10: 83–89.
  • Ozmidov R.V. 1983 – Small-scale turbulence and fine structure of hydro-physical fields in the ocean – Okeanologiya, 23(4), 533–537, (in Russian).
  • Paffenhöfer G.A. 1971 – Grazing and ingestion rates of nauplii, copepodids and adults of the marine planktonic copepod Calanus helgolandicus – Mar. Biol., 11: 286–298.
  • Potter D. 1982 – Computation physics. Wiley, London-New York, Sydney, Toronto.
  • Rothschild B.J., Osborn T.R. 1988 – Smallscale turbulence and plankton contact rates – J. Plankton Res., 10: 465–474.
  • Seuront L., Schmitt F., Lagadeuc Y. 2001 – Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here? – Deep Sea Res. I 4: 1199–1215.
  • Steele J.H., Mullin M.M. 1977 – Zooplankton dynamics. (In: The sea 6, Eds: E. D. Goldberg, I. N. McCave, J. J. O’Brien and J. H. Steele) – Interscience Publ., New York, London, Sydney, Toronto, pp 857–887.
  • Sundby S., Fossum P. 1990 – Feeding conditions of Arcto-Norwegian cod larvae compared with the Rothschild-Osborn theory on small-scale turbulence and plankton contact rates – J. Plankton Res., 12: 1153–1162.
  • Sundby S., Ellertsen B., Fossum P. 1994 – Encounter rates between first-feeding cod larvae and their prey during moderate to strong turbulence – ICES Marine Science Symposium, 198: 393–405.
  • Winogradow M.E., Szuszkina E.A. 1987 – Functioning of plankton communities in the euphotic zone of the ocean – Nauka, Moskwa.
  • Witek Z. 1995 – Biological production and its utilization within a marine ecosystem in the western Gdańsk Basin – Sea Fisheries Institute, Gdynia, 145 pp.
  • Viherluoto M., Viitasalo M. 2001 – Temporal variability in functional responses and prey selectivity of the pelagic mysid, Mysis mixta, in natural prey assemblages – Marine Biology 138: 575–583.
  • Yamazaki H., Osborn T.R., Squires K.D. 1991 – Direct numerical simulated of planktonic contact in turbulent flow – J. Plankton Res., 13: 629–643.
  • Young I.R., Banner M.L. 2001 – Modeling of finite depth wind wave dissipation, ONR Report, http:/www.onr.navy.mil/scitech/ocean/reports/dos//cd/01/cdyoun02.pdf
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-19bcd9c5-d416-4eec-b14a-d1ec01c5dce0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.