Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
From the seven species: A. amazonense, A. halopraeferens, A. largimobile, A. irakense and A. doebereinerae, that had been described, A. brasilense and A. lipoferum were isolated all over the word from soil and the roots a variety of grasses and cereals. These bacteria are aerobic nonfermentative chemoorganotrophs. They are Gram negative, the cells are vibrioid to S-shaped, mobile in liquid media by a polar flagellum. On solid media, A. brasilense, A. lipoferum and A. irakense have the lateral flagellae. In case of Azospirillum spp. the formation of cyst-like structures in old cultures was described. They contain granules of poly-ß-hydroxybutyrate (PHB). Azospirillum spp. synthesize exopolysaccharides and capsular polysaccharides. The G + C content in DNA varies between 64 and 70 mol%. Their optimum growth temperature ranges from 28° to 41°C. In general, the bacteria of Azospirillum genus utilize a variety of sugars, alcohols and organic acids as carbon sources. A. irakense grows with pectin as the sole carbon source. Autotrophic growth under aerobic conditions, with H₂ as the energy source has been demonstrated for A. lipoferum. Azospirillum spp. can utilize the ammonia and nitrate, most strains of A. brasilense and A. lipoferum are denitrifiers, whereas A. amazonense and A. irakense are reported to be unable to denitrify. From other physiological properties, they can produce siderophores, phytohormones and other plant growth-promoting substances.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
3-20
Opis fizyczny
s.3-20,tab.,rys.,bibliogr.
Twórcy
autor
- Instytut Uprawy, Nawozenia i Gleboznawstwa, Osada Palacowa, 24-100 Pulawy
Bibliografia
- [1] Bachhawat A.K., Ghosh S. 1987. Isolation and characterisation of the outer membrane proteins of A.brasilense. J. Gen. Microb. 133: 1751-1756.
- [2] Bachhawat A.K., Ghosh S. 1987. Iron transport in Azospirillum brasilense: role of the siderophore spirillobactin. J. Gen. Microb. 133: 1759-1765.
- [3] Barkovski A.L., Korshunova V.E., Pozdnyacova L.I. 1995. Catabolism of phenol and benzoate by Azospirillum strains. App. Soil Ecol. 2: 17-24.
- [4] Bashan Y., Holugin G., Rodriguez N., Puente M.E., Ferrera-Cerrato R. 1994. Azospirillum brasilense: Root-colonization of weeds and crop plants, inter-root movement and survival in soils and rhizosphere. 15th World Congress of Soil Science. Acapulco, Mexico, July 10-16, 4a: 13-29.
- [5] Bashan Y., Levanony H. 1988. Interaction between Azospirillum brasilense CD and wheat root cells during early stages of root colonization. W: Azospirillum. IV. Ed. W. Klingmuler Springer Verlag, Berlin: 166 ss.
- [6] Bekri M.A., Desair J., Keijers V., Proost P., Van Leeuwen M.S., Vanderleyden J., Vande Broek A. 1999. Azospirillum irakense produces a novel type of pectate lyase. J. Bacteriol. 181: (8) 2440-2447.
- [7] Ben Dekhil S., Cahill M., Stackebrandt E., Sly L.I. 1997. Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst. Appl. Microbiol. 20: 72-77.
- [8] Bottini R., Fulcheri M., Pearce D., Pharis R.P. 1989. Identification of gibberellins a1, a3, and iso-a3 in cultures of Azospirillum lipoferum. Plant Phisiol. 90: 45-47.
- [9] Day J.M., Döbereiner J. 1976. Pysiological aspects of N₂-fixation by Spirillum from Diditaria roots. Soil Biol. Biochem. 8: 45-50.
- [10] Döbereiner J., Campelo A.B. 1971. Non-symbiotic nitrogen fixing bacteria in tropical soil. Plant Soil. Spec. Vol. 457-470.
- [11] Eckert B., Weber O.B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A. 2001. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int. J. Syst. Evol. Microbiol. 51: 17-26.
- [12] Fendrik I., del Gallo M., Vanderlayden J., de Zamaroczy M. 1994. Azospirillum VI and related microorganisms: Genetics, Physiology, Ecology. Proceedings of NATO Advanced Research Workshop held September 4-7, Sarvar, Hungary: 387-389.
- [13] Haahtela K., Wartiovaara T., Sundman V., Skujins J. 1981. Root-associated N₂ fixation (acetylene reduction) by Enterobacter i Azospirillum strains in cold-climate spodosols. Appl. Environ. Microbiol. 41: 203-206.
- [14] Hartmann A., Kleiner D. 1982. Ammonium (methylammonium) transport by Azospirillum spp. FEMS Microbiol. Lett. 15: 65-67.
- [15] Hartmann A., Zimmer W. 1994. Physiology of Azospirillum. W: Azospirillum/Plant Associations. Red. Y. Okon, CRC Press, Boca Raton: 15-41.
- [16] Huijbregts R.P.H., de Kroon A.I.P.M., de Kruijff B. 2000. Topology and transport of membrane lipids in bacteria. Biochem. Biophys. Acta. 1469: 43-61.
- [17] Jaśkowska H. 1993. Występowanie i charakterystyka bakterii z rodzaju Azospirillum w ryzosferze roślin zbożowych. Praca doktorska. Warszawa. SGGW.
- [18] Kadouri D., Burdman S., Jurkevich E., Okon Y. 2002. Identification and isolation of genes involved in poly-ß-hydroxybutyrate (PHB) biosynthesis in Azospirillum brasilense and characterization of a phbC mutant. App. Environ. Microbiol. 68: 2943-2949.
- [19] Kadouri D., Edelshtein Z., Jurkevich E., Okon Y. 2002. Isolation of genes involved in poly-ß-hydroxybutyrate (PHB) metabolism and stress endurance in Azospirillum brasilense. 9th International Symposium on Nitrogen Fixation with non-legumes. September 1-5, Leuven, Belgium: 130.
- [20] Khammas K.M., Ageron E., Grimont P.A.D., Kaiser P. 1989. Azospirillum irakense sp. nov., anitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res. Microbiol. 140: 679-693.
- [21] Król M.J. 1999. Azospirillum - bakterie asocjacyjne w zrównoważonym rolnictwie. Fol. Univ. Agric. Stetin. 201 Agricultura (78): 93-102.
- [22] Król M.J. 1997. Występowanie bakterii z rodzaju Azospirillum w ryzosferze traw. Zesz. Nauk. AR Szczec. 181. Rolnictwo. 68: 133-140.
- [23] Król M.J., Kobus J. 1996. Free-living halofilic bacteria fixing - N₂. 2nd European Nitrogen Fixation Conference. NATO Advanced Reaserch Workshop. Poznań. September 8-13: 168.
- [24] Król M.J., Perzyński A. 2000. Cellulose and xylan utilization by pure cultures of nitrogen-fixing Azospirillum spp. 4nd European Nitrogen Fixation Conference, September 16-20, Sevilla - Spain: 143.
- [25] Król M.J., Perzyński A.2001. Wytwarzanie związków chelatujqcych Fe3+ przez bakterie z rodzaju Azospirillum. Fol. Univ. Agric. Stetin. 221 Agricultura (88): 125-131.
- [26] Król M.J., Perzyński A. 2001. Charakterystyka biochemiczna bakterii z rodzaju Azospirillum ryzosfery zbóż. Fot. Univ. Agric. Stetin. 221 Agricultura (88): 112-116.
- [27] Król M., Kobus J., Perzyński A. 1998. Hydroliza pektyn przez bakterie z rodzaju Azospirillum. Zesz. AR w Poznaniu: 155-167.
- [28] Kulińska D. 1983. Occurrence of Azospirillum in Polish soils. Acta Microbiol. Pol. 32: 265-268.
- [29] Kurek E., Król M.J., Zielewicz-Dukowska J., Perzyński A.2001. Rozkład produktów naftowych zanieczyszczających glebę przez bakterie wykorzystujące azot atmosferyczny. Ekologia w przemyśle rafineryjnym. Konferencja naukowo-techniczna, Kielce 10-12.10. ISBN 83-915734-0-0: 153-162.
- [30] Lopez-de Victoria G., Lovell C.R. 1993. Chemotaxis of Azospirillum species to aromatic compounds. Appl. Environ. Microbiol. 59: 2951-2955.
- [31] Magalhaes F.M., Baldani J.I., Souto S.M., Kuykendall J.R., Dobereiner J. 1983. A new acid tolerant Azospirillum species. Ann. Acad. Bras. Cien. 55: 417-430.
- [32] Mikucki J., Lisiecki P. 1998. Siderofory - agresyny bakterii. Post. Mikrobiol. 37: 73-97.
- [33] Omar M.N.A., Berge O., Hassanein E.E., Shalan S.N. 1992. In vitro and in situ effects of herbicide thioben carb on rice-Azospirillum association. Symbiosis. 13: 55-63.
- [34] Ona O., Smets I., Bernaerts K., Van Impe J., Vanderleyden J. 2002. The effect of pH on indole-3-acetic acid (IAA) biosynthetic activity of Azospirillum brasilense Sp7. 9th International Symposium on Nitrogen Fixation with non-legumes. September 1-5, Leuven, Belgium: 135.
- [35] Reinhold B., Hurek T., Fendrik J. 1985. Strain specific chemotaxis of Azospirillum sp. J. Bacteriol. 162: 190-195.
- [36] Reinhold B., Hurek T., Fendrik J., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J. 1987. Azospirillum halopraeferans sp. nov. of Kallar grass (Leptochloa fusca L. KUNTH). Int. J. Syst. Bacteriol. 37: 43-51.
- [37] Sadasivan L., Neyra C.A. 1985. Flocculation in Azospirillum brasilense and Azospirillum lipoferum. W: Azospirillum III. Genetics, physiology, ecology, red. W. Klingmüller, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo: 230.
- [38] Sajbidor J. 1997. Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit. Rev. Biotechnol. 17: 87-103.
- [39] Sampaio M.J.A.M., Silva E.M.R., Döbereiner J., Yates M.G., Pedrosa F.O. 1981. Autotrophy and methylotrophy in Derxia gummusa, Azospirillum brasilense and Azospirillum lipoferum in Current Perspectives in Nitrogen Fixation. Gibson A.H., Newton W.E. red. Australian Academic Science. Canberra: 444.
- [40] Sawicka A., Makarowa M. 1994. Nitrogen fixation by Azospirillum with wheat and maize radicles as a source of carbon and energy. Acta Microbiol. Pol. 43: 107-109.
- [41] Skerman V.B.D., Sly L.I., Williamson M.L. 1983. Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. Int. J. Syst. Bacteriol. 33: 300-308.
- [42] Sly L.I., Stackebrandt E. 1999. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int. J. Syst. Bacteriol. 49: 541-544.
- [43] Tal S., Okon Y. 1990. Purification and characterization of D(-)-ß-hydroxybutyrate dehydrogenase from Azospirillum brasilense. Cd. J. Gen. Microbiol. 136: 645-653.
- [44] Tarrand J.J., Krieg N.R., Döbereiner J. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillurn gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24: 967-980.
- [45] Tien T.U., Gaskins U.H., Hubbell D.H. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on growth of pearl millet. Appl. Environ. Microbiol. 37(5): 1016-1024.
- [46] Van Bastelaere E., Lambrecht M., Vermeiren H., Van Dommelen A., Keijers V., Proost P., Vanderleyden J. 1999. Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol. Microbiol. 32: 703-714.
- [47] Vande Broek A., Vanderleyden J. 1995. Review: genetics of the Azospirillum - plant root association. Crit. Rev. Plant Sci. 14: 445-466.
- [48] Vieille C., Elmerich C. 1992. Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutrophus phbB and Rhizobium meliloti nodG. Mol. Gen. Genet. 231: 375-387.
- [49] Zimmer W., Bothe H. 1988. The phytohonnonal intrereactions between Azospirillum and wheat. Plant Soil. 110: 239-247.
- [50] Zimmer W., Elmerich C. 1990. Regulation of the synthesis of indole-3-acetic acid in Azospirillum. W: Advances in Molecular Genetics of Plant-Microbe Interactions. Vol. I. Hennecke H., Verma D.P.S. red., Kluwer Academic Publishers. London: 465.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-184862ff-449e-453e-b854-b61207002133