Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 1 |
Tytuł artykułu

Effect of sodium nitrate [V] on Saccharomyces cerevisiae strains of different antioxidative status and energetic metabolism

Autorzy
Treść / Zawartość
Warianty tytułu
PL
Oddzialywanie azotanu [V] sodu na szczepy drozdzy Saccharomyces cerevisiae o roznym statusie antyoksydacyjnym i metabolizmie energetycznym
Języki publikacji
EN
Abstrakty
EN
The Saccharomyces cerevisiae yeast, differing with respect to the efficiency of antioxidating system and activity of mitochondrial processes, was used in the experiment. Sensitivity of these cells to 40-min incubation with sodium nitrate (V) was determined. Respiratory-competent cells deprived of the main antioxidating enzymes and the cells subjected to oxidative stress generated by antimycin A showed a greater sensitivity to sodium nitrate (V) than the cells deprived of functional mitochondria or the cells taken during the stationary phase of growth. The obtained results show that reactive oxygen species do not play an important part in the mechanisms of toxicity induced by the presence of sodium nitrates (V) in the case of cells with oxygen metabolism.
PL
Oddziaływanie azotanu (V) sodu badano na komórkach drożdży Saccharomyces cerevisiae różniących się sprawnością systemu antyoksydacyjnego i aktywnością procesów mitochondrialnych. Oznaczono wrażliwość tych komórek na 40 minutową inkubację z azotanem V sodu. Kompetentne oddechowo komórki pozbawione głównych enzymów antyokydacyjnych oraz komórki poddane stresowi oksydacyjnemu, generowanemu za pomocą antymycyny A charakteryzowały się większą wrażliwością na azotan V sodu niż komórki pozbawione funkcjonalnych mitochondriów lub pobrane ze stacjonarnej fazy wzrostu (rys. 1 i 2). Uzyskane wyniki sugerują, że reaktywne form tlenu nie odgrywają istotnej roli w mechanizmach toksyczności indukowanych obecnością azotanu V sodu w przypadku komórek o metabolizmie tlenowym.
Wydawca
-
Rocznik
Tom
58
Numer
1
Opis fizyczny
p.41-44,fig.,ref.
Twórcy
autor
  • University of Agriculture of Lublin, Szczebrzeska 102, 22-400 Zamosc, Poland
Bibliografia
  • 1. Ammerer G., Richter K., Hartter E., Ruis H., Synthesis of Saccharomyces cerevisiae catalase A in vitro. Eur. J. Biochem., 1981, 113, 327-331.
  • 2. Bilinski T., Krawiec Z., Liczmanski A., Litwinska J., Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem. Biophys. Res. Commun., 1985, 130, 533-539.
  • 3. Bilinski T., Lukaszkiewicz J., Sledziewski A., Demonstration of anaerobic catalase synthesis in the cz1 mutant of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun., 1978, 83, 1225-1233.
  • 4. Boveris A., Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol., 1984, 105, 429-435.
  • 5. Boy-Marcotte E., Perrot M., Bussereau F., Boucherie H., Jacquet M., Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J. Bacteriol., 1998, 180,, 1044-1052.
  • 6. Chatterjee A., Singh K.K., Uracil-DNA glycosylase-deficient yeast exhibits a mitochondrial mutator phenotype. Nucleic Acids Res., 2001, 29, 4935–4940.
  • 7. Demasi A.P., Pereira G.A., Netto L.E., Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J., 2006, 273, 805-816.
  • 9. Faivre J., Faivre M., Klepping C., Roche L., Methemoglobinemias caused by ingestion of nitrites and nitrates. Ann. Nutr. Aliment., 1976, 30, 831-838 (in French; English abstract).
  • 10. Green L.C., Ruiz de Luzuriaga K., Wagner D.A., Rand W., Istfan N., Young V.R., Tannenbaum S.R., Nitrate biosynthesis in man. Proc. Natl. Acad. Sci. U S A, 1981, 78, 7764-7768.
  • 11. Kirpichenok L.N., Gidranovich L.G., Kheidorov V.P., The joint action of nitrates and gamma radiation on the blood plasma proteinase-inhibiting and antioxidative systems in rats. Radiats. Biol. Radioecol., 1997, 37, 297-302 (in Russian; English abstract).
  • 12. Li Y., Huang T.T., Carlson E.J., Melov S., Ursell P.C., Olson J.L., Noble L.J., Yoshimura M.P., Berger C., Chan P.H., Wallace D.C., Epstein C.J., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet., 1995, 11, 376-381.
  • 13. Maris A.F., Assumpcao A.L., Bonatto D., Brendel M., Henriques J.A., Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Curr. Genet., 2001, 39, 137-149.
  • 14. Müller F., Crofts A.R., Kramer D.M., Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex. Biochemistry, 2002, 41, 7866-7874.
  • 15. Müller I., Zimmermann M., Becker D., Flömer M., Calendar life span versus budding life span of Saccharomyces cerevisiae. Mech. Ageing Dev., 1980, 12, 47-52.
  • 16. Rasmussen A.K., Chatterjee A., Rasmussen L.J., Singh K.K., Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae. Nucleic Acids Res., 2003, 31, 3909‑3917.
  • 17. Reaume A.G., Elliott J.L., Hoffman E.K., Kowall N.W., Ferrante R.J., Siwek D.F., Wilcox H.M., Flood D.G., Beal M.F., Brown R.H.Jr., Scott R.W., Snider W.D., Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet., 1996, 13, 43-47.
  • 18. Scheffler I.E., Mitochondria. 1999, Wiley-Liss, NewYork, N.Y, pp. 123-125.
  • 19. Shadel G.S., Yeast as a model for human mtDNA replication. Am. J. Hum. Genet., 1999, 65, 1230-1237.
  • 20. Simic M.G., The rate of DNA damage and aging. EXS., 1992, 62, 20-30.
  • 21. Singh K.K., Sigala B., Sikder H.A., Schwimmer C., Inactivation of Saccharomyces cerevisiae OGG1 DNA repair gene leads to an increased frequency of mitochondrial mutants. Nucleic Acids Res., 2001, 29, 1381–1388.
  • 22. Święciło A., Krzepiłko A., The role of antioxidant system in response of yeast Saccharomyces cerevisiae cells to strong salt stress. Zesz. Prob. Post. Nauk Rol., 2005, 505, 451-458 (in Polish; English abstract).
  • 23. Święciło A., Krzepiłko A., The role of superoxide dismutases and catalases in cells of Saccharomyces cerevisiae yeast response to oxidative stress induced by menadione. Zesz. Prob. Post. Nauk Rol., 2004, 496, 519-525 (in Polish; English abstract).
  • 24. Viau C., Pungartnik C., Schmitt M.C., Basso T.S., Henriques J.A., Brendel M., Sensitivity to Sn2+ of the yeast Saccharomyces cerevisiae depends on general energy metabolism, metal transport, anti-oxidative defences, and DNA repair. Biometals, 2006, 19, 705-714.
  • 25. Wawryn J., Krzepilko A., Myszka A., Bilinski T., Deficiency in superoxide dismutases shortens life span of yeast cells. Acta Biochim. Pol., 1999, 46, 249-253.
  • 26. Weyer P.J., Cerhan J.R., Kross B.C., Hallberg G.R., Kantamneni J., Breuer G., Jones M.P., Zheng W., Lynch C.F., Municipal drinking water nitrate level and cancer risk in older women: the Iowa Women’s Health Study. Epidemiology, 2001, 12, 327-338.
  • 27. Wiśnicka R., Krzepilko A., Wawryn J., Krawiec Z., Bilinski T., Protective role of superoxide dismutase in iron toxicity in yeast. Biochem. Mol. Biol. Int., 1998, 44, 635-641.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-14ad92eb-fbbe-473e-a393-1e19ce78f07a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.