Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 48 | 1 |
Tytuł artykułu

On the relationship between fractal geometry of space and time in which a system of interacting cells exists and dynamics of gene expression

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report that both space and time, in which a system of interacting cells exists, possess fractal structure. Each single cell of the system can restore the hierarchical organization and dynamic features of the entire tumor. There is a relationship between dynamics of gene expression and connectivity (i.e., interconnectedness which denotes the existence of complex, dynamic relationships in a population of cells leading to the emergence of global features in the system that would never appear in a single cell existing out of the system). Fractal structure emerges owing to non-bijectivity of dynamic cellular network of genes and their regulatory elements. It disappears during tumor progression. This latter state is characterized by damped dynamics of gene expression, loss of connectivity, loss of collec­tivity (i.e., capability of the interconnected cells to interact in a common mode), and meta­static phenotype. Fractal structure of both space and time is necessary for a cellular sys­tem to self-organize. Our findings indicate that results of molecular studies on gene ex­pression should be interpreted in terms of space-time geometry of the cellular system. In particular, the dynamics of gene expression in cancer cells existing in a malignant tumor is not identical with the dynamics of gene expression in the same cells cultured in the monolayer system.
Wydawca
-
Rocznik
Tom
48
Numer
1
Opis fizyczny
p.209-220,fig.
Twórcy
  • Adam Mickiewicz University, Poznan, Poland
autor
autor
Bibliografia
  • 1.Waliszewski, P., Molski, M. & Konarski, J. (1998) On the holistic approach in cellular and cancer biology, nonlinearity, complexity, and quasi-determinism of dynamic cellular network. J. Surg. Oncol. 68, 70-78.
  • 2.Hastings, H.M. & Sugihara, G. (1993) Fractals. A User's Guide for the Natural Sciences; pp. 15-35, Oxford University Press, Oxford.
  • 3.Baker, G.L. & Gollub, J.P. (1996) Chaotic Dynamics, an Introduction; pp. 171-196, Cambridge University Press, New York.
  • 4.Devaney, R.L. (1986) Introduction to Chaotic Dynamical Systems; pp. 176-202, Benjamin Cummings, Reading.
  • 5.Peitgen, H.O., Jurgens, H. & Saupe, D. (1992) Chaos and Fractals; pp. 192-225, Springer Verlag, Heidelberg.
  • 6.Bassingthwaighte, J.B., Liebovitch, L.S. & West, B.J. (1994) Fractal Physiology. Oxford University Press, Oxford.
  • 7.Cross, S.S. (1997) Fractals in pathology. J. Pathol. 182, 1-8.
  • 8.Losa, G.A. & Nonnenmacher, T.F. (1996) Self-similarity and fractal irregularity in pathologic tissues. Modern Pathol. 9, 174-182.
  • 9.Smith, T.G., Jr., Lange, G.D. & Marks, W.B. (1996) Fractal methods and results in cellular morphology dimensions, lacunarity, and multifractals. J. Neurosci. Meth. 69, 123-136.
  • 10.Waliszewski, P., Molski, M. & Konarski, J. (1999) Self-similarity, collectivity, and evolution of fractal dynamics during retinoid-induced differentiation of cancer cell population. Fractals 7, 139-149.
  • 11.Bain, G., Ray, W.J., Yao, M. & Gottlieb, D.J. (1994) From embryonal carcinoma cells to neurons, the P19 pathway. Bioessays 16, 343-348.
  • 12.Edwards, M.K. & McBurney, M.W. (1983) The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev. Biol. 98, 187-191.
  • 13.Horn, V., Minucci, S., Ogryzko, V.Y., Adamson, E.D., Howard, B.H., Levin, A.A. & Ozato, K. (1996) RAR and RXR selective ligands cooperatively induce apoptosis and neuronal differentiation in P19 embryonal carcinoma cells. FASEB J. 10, 1071-1077.
  • 14.Jones-Villeneuve, E.M., McBurney, M.W., Rogers, K.A. & Kalnins, V.I. (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J. Cell Biol. 94, 253-262.
  • 15.Skerjanc, I.S., Slack, R.S. & McBurney, M.W. (1994) Cellular aggregation enhances MyoD-directed skeletal myogenesis in embryonal carcinoma cells. Mol. Cell. Biol. 14, 8451-8459.
  • 16.Staines, W.A., Morassutti, D.J., Reuhl, K.R., Ally, A.I. & McBurney, M.W. (1994) Neurons derived from P19 embryonal carcinoma cells have varied morphologies and neurotransmitters. Neuroscience 58, 735-751.
  • 17.Staines, W.A., Craig, J., Reuhl, K. & McBurney, M.W. (1996) Retinoic acid treated P19 embryonal carcinoma cells differentiate into oligodendrocytes capable of myelination. Neuroscience 71, 845-853.
  • 18.Pratt, M.A., Kralova, J. & McBurney, M.W. (1990) A dominant negative mutation of the alpha retinoic acid receptor gene in retinoic acid-nonresponsive embryonal carcinoma cells. Mol. Cell. Biol. 10, 6445-6453.
  • 19.Pratt, M.A., Langston, A.W., Gudas, L.J. & McBurney, M.W. (1993) Retinoic acid fails to induce expression of Hox genes in differentiation-defective murine embryonal carcinoma cells carrying a mutant gene for alpha retinoic acid receptor. Differentiation 53, 105-113.
  • 20.Berg, R.W. & McBurney, M.W. (1990) Cell density and cell cycle effects on retinoic acid-induced embryonal carcinoma cell differentiation. Dev. Biol. 138, 123-135.
  • 21.Chomczynski, P. & Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156-159.
  • 22.Bouillet, P., Oulad-Abdelghani, M., Vicaire, S., Garnier, J.M., Schuhbaur, B., Dolle, P. & Chambon, P. (1995) Efficient cloning of cDNAs of retinoic acid-responsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene Stra 1 (monouse Lerk-2). Dev. Biol. 170, 420-433.
  • 23.Krowczynska, A.M., Coutts, M., Makrides, S. & Brawerman, G. (1987) The mouse homologue of the human acidic ribosomal phosphoprotein PO, a highly conserved polypeptide that is under translational control. Nucleic Acids Res. 17, 6408-6412.
  • 24.Mandelbrot, B. (1983) The Fractal Geometry of Nature. Freeman, New York.
  • 25.Ko, M.S.H., Nakauchi, H. & Takahashi, N. (1990) The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 9, 2835-2842.
  • 26.Ko, M.S.H. (1991) A stochastic model for gene induction. J. Theor. Biol. 153, 181-194.
  • 27.Campisi, J., Medrano, E.E., Morreo, G. & Pardee, A.B. (1982) Restriction point control of cell growth by a labile protein, evidence for increased stability in transformed cells. Proc. Natl. Acad. Sci. U.S.A. 79, 436-440.
  • 28.Potten, C.S. & Loeffler, M. (1990) Stem cells, attributes, cycles, spirals, pitfalls, and uncertainties. Lessons from the crypt. Development 110, 1001-1020.
  • 29.Cummings, F.W. (1985) A pattern-surface interactive model of morphogenesis. J. Theor. Biol. 116, 243-273.
  • 30.Nicolis, J.S. (1986) The concept of complexity; in Dynamics of Hierarchical Systems. An Evolutionary Approach (Nicolis, J.S., eds.) pp. 72-73, Springer Verlag, Berlin.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-108ce3c5-87db-4b10-8620-7834e1b97018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.