Czasopismo
Tytuł artykułu
Warianty tytułu
Uprawa szalwii czerwonokorzeniowej in vitro na pozywkach kalusowych
Języki publikacji
Abstrakty
Salvia milthiorrhiza root (Danshen) is one of the oldest and most traditional drug of Chinese origin, mainly used in the treatment of cardiovascular and cerebrovascular diseases. The tanshiniones (diterpenoids) and phenolic acids are the main biological active substances of S. miltiorrhiza. The aim of this study was to determine the optimal conditions for callus cultures and biosynthesis of the biological active compounds. The callus cultures (on solid medium, CC A in shake flask and CC A in bioreactor) were obtained and phytochemical studies on them were carried out. Total amount of phenolic acids determined in callus (solid medium) averaged from 2.58% to 5.72% of dry weight (DW). The callus cultured on solid medium and CC A (in flasks) did not produce tanshiniones. Culture conditions in the bioreactor enabled the biosynthesis of tanshiniones (0.27% of dihydrotanshinione, 0.12% of cryptotanshinone, 0.01% of tanshinione 2A and tanshinione 1). The obtained contents of rosmarinic acid in callus on solid medium and CC A (cultured in shake flasks) are relatively high and comparable to raw material. The callus cultured in bioreactor is eligible for tanshinione production, moreover the accumulation of them is comparable with the intact plants.
Szałwia czerwonokorzeniowa (Salvia miltiorrhiza, Danshen) należy do najstarszych i najcenniejszych ziół używanych w chińskiej medycynie ludowej. Stosowana jest głównie w chorobach układu krążenia. Korzenie szałwi zawierają dwie grupy związków biologicznie aktywnych: tanszinony oraz kwasy fenolowe. Celem badań było określenie optymalnych parametrów hodowli oraz warunków biosyntezy związków aktywnych. Kultury kalusowe hodowano na pożywce stałej oraz płynnej: w kolbkach na wytrząsarkach i w bioreaktorze (agregaty CC A). Suma kwasów fenolowych w kalusie hodowanym na pożywce stałej wynosiła 2,58%–5,72% suchej masy (s.m.). Kalus hodowany na pożywce stałej oraz agregaty w kolbkach nie syntetyzowały tanszinonów. Agregaty hodowane w bioreaktorze produkowały tanszinony na poziomie: 0,27% s.m – dihydrotanszinon, 0,12% s.m. – kryptotanszinon, 0,01% s.m. – tanszinon 2A i tanszinon 1. Zawartość kwasu rozmarynowego w kalusie hodowanym na pożywce stałej oraz w hodowli suspensyjnej w kolbkach była stosunkowo wysoka i porównywalna z roślinami z gruntu (uprawianymi w polskich warunkach klimatycznych). Warunki hodowli w bioreaktorze umożliwiły syntezę tanszinonów porównywalną z roślinami z gruntu. Słowa
Twórcy
autor
- Research Institute of Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
autor
autor
autor
autor
autor
autor
autor
autor
autor
Bibliografia
- 1. L am FF, Yeung JH , Cheung JH , Or PM. Pharmacological evidence for calcium channel inhibition bydanshen (Salvia miltiorrhiza) on rat isolated femoral artery. J Cardiovasc Pharmacol 2006; 47:139-45.
- 2. L ing S, Dai A, Guo Z, Yan X, Komesaroff PA. Effects of a Chinese herbal preparation on vascular cells in culture: mechanisms of cardiovascular protection. Clin Exp Pharmacol Physiol 2005; 32:571-8.
- 3. Sze FK, Yeung FF, Wong E, Lau J. Does Danshen improve disability after ischaemic stroke? Acta Neurol Scand 2005; 111:118-25.
- 4. Wang XJ and Xu JX. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity. Neurosci Res 2005; 51:129-38.
- 5. L am BYH , Lo ACY , Sun X, Luo HW, Chung SK, Sucher NJ . Neuroprotective effects of tanshiniones in transient focal cerebral ischemia in mice. Phytomedicine 2003; 10:289-91.
- 6. Wu ZM, Wen T, Tan YF, Liu Y, Ren F, Wu H. Effects of salvianolic acid A on oxidative stress and liver injury induced by carbon tetrachloride in rats. Basic Clin Pharmacol Toxicol 2007; 100:115-20.
- 7. L in YL , Wu Ch, Luo MH, Huang YJ , Wang CN , Shiao MS, Huang YT . In vitro protective effects of salvianolic acid B on primary hepatocytes and hepatic stellate cells. J Ethnopharmacol 2006; 105:215-22.
- 8. Z hang HS and Wang SQ. Salvianolic acid B from Salvia miltiorrhiza inhibits tumor necrosis factor-α (TN F- α)-induced MMP-2 upregulation in humanic aortic smooth muscle cells via suppression of NAD(P)H oxidase-derived reactive oxygen species. J Mol Cell Cardiol 2006; 41: 138-48.
- 9. Z hou Z, Liu Y, Miao AD, Wang SQ. Salvianolic acid B attenuates plasminogen activator inhibitor type 1production in TN F-alpha treated human umbilical vein endothelial cells. J Cell Biochem 2005; 96:109-16.
- 10. Kim JS, Narula AS, Jobin C. Salvia miltiorrhiza water-soluable extract, but not its constitiuent salvianolic acid B, abrogates LPS-induced NF-κB signalling in intestinal epithelial cells. Clin Exp Immunol 2005; 141:288.
- 11. Wu YJ , Hong ChY, Lin SJ, Wu P, Shiao MS. Increase of vitamin e content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluable antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler Thromb Vasc Biol 1998; 18:481-6
- 12. Rzemykowska Z, Hołderna-Kędzia E. Phytocemical and microbiological studies of Salviae officinalis folium and Salviae miltiorrhizae radix extracts. Herba Polonica. 2003;49:392.
- 13. Buchwald W, Kędzia B, Mścisz A. Microbiological research on the extracts from Salvia miltiorrhiza Bunge roots. Herba Pol 2007 ;53(4).
- 14. Adams JD, Wang R, Yang J, Lien EJ . Preclinical and clinical examinations of Salvia miltiorrhiza and its tanshiniones in ischemic conditions. Chin Med 2006; 23:1-3.
- 15. Wong CK, Tse PS, Wong EL , Leung PC, Fung KP, Lam CW. Immunomodulatory effects of yun zhi and danshen capsules in health subjects – a randomized, double-blind, placebo-controlled, crossover study.Int Immunopharmacol 2004; 4:201-11.
- 16. Li J, HE LY , Song WZ. Separation and quanitative determination of seven aqueos depsides in Salvia miltiorrhiza by HPLC scanning. Yao Hsueh Pao 1993; 28:543-7.
- 17. L i L, Tan R, Chen WM. Salvianolic acid A, anew depside from roots of Salvia miltiorrhiza. Planta Med 1984; 50:227-8.
- 18. Ai Ch, Li L. salvianolic acids D and E: two new depsides from Salvia miltiorrhiza. Planta Med 1992; 58:197-9.
- 19. Kohda K, Takeda O, Tanaka S, Yamasaki K, Yamashita A, Kurokawa T, Ishibashi S. Isolation of inhibitors of adenylate cyclase from Danshen, the root of Salvia miltiorrhiza. Chem Pharm Bull 1989; 37:1287-90.
- 20. L iu AH, Li L, Xu M, Lin YH , Guo HZ , Guo DA. Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC –
- 21. L uo HW, Wu BJ, Wu MY, Yong ZG, Niwa M, Hirata Y. Pigments from Salvia miltiorrhiza. Phytochem 1985; 24: 815-7.
- 22. I keshiro Y, Hashimoto I, Iwamoto Y, Mase I, Tomita Y. Diterpenoids from Salvia miltiorrhiza. Phytochem 1992; 30:2791-2.
- 23. L i HB, Chen F. Preparative isolation and purification of six diterpenoids from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatography. J Chromatogr A 2001; 925:109-14.
- 24. Wu JY , NG J, Shi M, Wu SJ. Enhanced secondary metabolite (tanshinione) production of Salvia miltiorrhiza hairy roots in a novel root-bacteria coculture process. Appl Microbiol Biotechnol 2007, Sep 20 [ahead of print].
- 25. Shi M, Kwok KW, Wu JY . Enhancement of tanshinione production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnol Appl Biochem2007; 46(Pt 4):191-6.
- 27. Y an Q, Shi M, NG J, Wu JY . Elicitor-induced rosmarinic acid accumulation and secondary metabolism nzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 2006; 170:853-8.
- 28. Ge X, Wu JY . Tanshinione production and isoprenoid pathway in Salvia miltiorrhiza hairy roots induced Ag+ and yeast elicitor. Plant Sci 2005;168:487-91.
- 29. Ge X, Wu JY . Induction and potentiation of diterpenoid tanshinione accumulation in Salvia miltiorrhiza hairy roots by betaaminobutyric acid. Appl Microbiol Biotechnol 2005; 68:183-8.
- 30. Y an Q, Hu Z, Tan RX, Wu JY . Efficient production and recovery of diterpenoid tanshiniones in Salvia iltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. JBiotechnol 2005; 119:416-24.
- 31. Z hang Ch, Yan Q, Cheuk WK, Wu JY . Enhancement of tanshinione production in Salvia miltiorrhiza hairy root culture by Ag + elicitation and nutrient feeding. Planta Med 2004; 70:147-51.
- 32. C hen H, Chen F, Chiu FCK, Lo CMY. The effect of yeast elicitor on the growth and secondary metabolism of hairy root cultures of Salvia miltiorrhiza. Enzyme Microb Technol 2001; 28:100-5.
- 33. H u ZB, Liu D, Alfermann AW. Genetic transformation of Salvia miltiorrhiza. Biotechnology in Agriculture and Forestry. Springer Verlag, Berlin 1999; XVII :249-60.
- 34. Wu CT , Mulabagal V, Nalawade SM, Chen CL , Yang TF, Tsay HS. Isolation and quantitative analysis of cryptotanshinione, an active quinoid diterpene formed in callus of Salvia miltiorrhiza Bunge. Biol Pharm Bull 2003; 26:845-8.
- 35. Z hong JJ , Chen H, Chen F. Production of rosmarinic acid, lithospermic acid B, and tanshiniones by suspensi nultures of Ti-transformed Salvia miltiorrhiza cells in bioreactors. J Plant Biotechnol 2001; 3:107-12.
- 36. C hen H, Chen F. Effect of yeast elicitor on secondary metabolism of Ti-transformed Salvia miltiorrhizacell suspension cultures. Plant Cell Rep 2000; 19:710-7.
- 37. Misayaka H, Nasu M, Yoneda K. Salvia miltiorrhiza: in vitro production of cryptotanshinione and erruginol. Biotechnology in Agriculture and Forestry. Medicinal and Aromatic Plants II . Springer Verlag, Berlin-Heidelberg 1989; 7:417-30.
- 38. Misayaka H, Nasu M, Yamamoto T, Shiomi Y, Ohno H, Endo Y, Yoneda K. Effect of nutrional factors on cryptotanshinione and ferruginol production by cell suspension cultures of Salvia miltiorrhiza. Phytochem 1987: 26:1421-4.
- 39. Misayaka H, Nasu M, Yamamoto T, Endo Y, Yoneda K. Regulation of ferruginol and cryptotanshinione biosynthesis in cell suspension cultures of Salvia miltiorrhiza. Phytochem 1986; 25:637-40.
- 40. Misayaka H, Nasu M, Yamamoto T, Yoneda K. Production of ferruginol by cell suspension cultures of Salvia miltiorrhiza. Phytochem 1985: 24:1931-3.
- 41. Shimomura K, Kitazawa T, Okamura N, Yagi A. Tanshinione production in adventitious roots and regenerated of Salvia miltiorrhiza. J Nat Prod 1991; 54:1583-7.
- 42. Morimoto S. Goto Y, Shoyama Y. Production of lithospermic acid B and rosmarinic acid in callus tissue and regenerated plantlets of Salvia miltiorrhiza. J Nat Prod 1994; 57:817-23.
- 43. Buchwald W. Micropropagation and phytochemical evaluation of Salvia miltiorrhiza Bunge. Herba Pol1999; 45:334-7.
- 44. Miyasaka H, Nasu M, Yamamoto T, Endo Y, Yoneda K. Production of cryptotanshinione and ferruginol byimmobilized culture cells of Salvia miltiorrhiza. Phytochem 1986; 25:1621-4.
- 45. Buchwald W, Forycka A, Mścisz A, Mielcarek S, Mrozikiewicz PM, Baraniak M. Zmiany zawartości związków biologicznie czynnych w korzeniach Salvia miltiorrhiza Bunge. Herba Pol 2006;52:64.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-0e928772-4655-40bc-b948-535dc4791822