Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The phylogenetic relationships of Cervidae and Moschidae were examined using partial sequence data of mitochondrial DNA (mtDNA) cytochrome b. Ten new sequences were obtained for six species of Cervidae and Moschidae, and aligned with those previously reported for other deer species. Our results demonstrated that the phylogenetic status of the taxa inferred from molecular data was congruent with taxonomy based on morphological studies. Cervidae formed a monophyletic group that consists of four subfamilies: Cervinae, Muntiacinae, Hydropotinae, and Odocoileinae. Moschidae occurred at the base of the Cervidae clade. On the basis of molecular clocks for genetic distance, the divergence time of mtDNA haplotypes within the subfamily Cervinae, among subfamilies in Cervidae, and between Moschidae and Cervidae was estimated to date 2-7 MYA, 6-10 MYA and 8-13 MYA, respectively.
Twórcy
autor
- Chinese Academy of Sciences, Beijing, 100080, China
autor
autor
autor
autor
autor
autor
Bibliografia
- Abernethy K. 1994. The establishment of a hybrid zone between red and sika deer (genus Cervus). Molecular Ecology 3: 551-562.
- Anderson S., Bankier A. T., Barrell B. G., de Bruijin M. H. L., Coulson A. R., Drouin J., Eperson I. C., Nierlich D. P., Roe B. A., Sanger F., Schreier P. H., Smith A. J. H., Staden R. and Young I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290: 457-465.
- Bouvrain P. G., Geraads D. and Jehenne Y. 1989. New data relating to the classification of the Cervidae (Artiodctyla, Mammalia). Zoologischer Anzeiger 1/2: 82-90.
- Chikuni K., Mori Y., Tabata T., Saito M., Monma M. and Kosugiyama M. 1995. Molecular phylogeny based on the k-casein and cytochrome b sequences in mammalian suborder Ruminantia. Journal of Molecular Evolution 41: 859-866.
- Comincini S., Sironi M., Bandi C., Giunta C., Rubini M. and Fontana F. 1996. RAPD analysis of systematic relationships among the Cervidae. Heredity 76: 215-221.
- Cook C. E., Wang Y. and Sensabaugh G. 1999. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Molecular Phylogeny and Evolution 1: 47-56.
- Cronin M. A. 1991. Mitochondrial-DNA phylogeny of deer (Cervidae). Journal of Mammalogy 72: 533-566.
- Cronin M. A., Stuart R., Pierson B. J. and Patton J. C. 1996. K-casein gene phylogeny of higher ruminants (Pecora, Aeriodactyla). Molecular Phylogeny and Evolution 6: 295-311.
- Dong W. 1993. The fossil records of deer in China. [In: Deer of China. N. Ohtaishi, ed], Elsevier, Amsterdam: 95-102.
- Emerson B. C. and Tate M. L. 1993. Genetic analysis of evolutionary relationships among deer (subfamily Cervinae). Journal of Heredity 84: 266-273.
- Felsenstein J. 1989. PHYLIP-phylogeny inference package version 3.2. Cladistics 5: 164-166.
- Fontana F. and Rubini M. 1990. Chromosomal evolution in Cervidae. BioSystems 24: 157-174.
- Groves C. P. and Grubb P. 1987. Relationships of living deer. [In: Biology and management of the Cervidae. C. M. Wemmer, ed], Smithsonian Institute Press, Washington, D. C.: 21-59.
- Han D. 1985. Preliminary study of the fossils of the order Artiodacyla from the ancient fossil locality of Lufeng: Renlixue Xuebao. Acta Anthropologica Sinica 4: 4-54. [In Chinese with English summary]
- Hasegawa M., Kishino H. and Yano T. 1989. Estimation of branching dates among primates by molecular clocks of nuclear DNA which showed down in Homonoidea. Journal of Human Evolution 18: 461-476.
- Irwin D. M., Kocher T. D. and Wilson A. C. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32: 128-144.
- Janis C. M. 1988. New ideas in ungulate phylogeny and evolution. Trends in Ecology and Evolution 3: 291-297.
- Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.
- Kraus F. and Miyamoto M. 1991. Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Systematic Zoology 40: 117-130.
- Lan H., Shi L. M. and Suzuki H. 1993. Restriction site polymorphism in ribosomal DNA of muntjacs. Chinese Science Bulletin 38: 1659-1664.
- Li M., Sheng H. L., Tamate H., Masuda R., Nagata J. and Ohtaishi N. 1998a. MtDNA difference and molecular phylogeny among musk deer, Chinese water deer, munjak and deer. Acta Theriologica Sinica 18: 184-191. [In Chinese with English summary]
- Li M., Sheng H. L., Tamate H., Masuda R., Nagata J. and Ohtaishi N. 1999. Study of mtDNA divergence and phylogeny of four species of deer (Genus Cervus). Acta Zoological Sinica 1: 99-105. [In Chinese with English summary]
- Li M., Wang X. M., Sheng H. L., Tamate H., Masuda R., Nagata J. and Ohtaishi N. 1998b. The origine and genetic division of four subspecies of red deer (Cervus eaphus). Zoological Research 3: 177-183. [In Chinese with English summary]
- Lister A. M. 1984. Evolutionary and ecological origins of British deer. Proceedings of the Royal Society of Edinburgh 82B: 205-229.
- Meyer A. 1994. Shortcomings of the cytochrome b gene as a molecular marker. Trends in Ecology and Evolution 9: 278-280.
- Miyamoto M., Kraus F. and Ryder O. A. 1990. Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proceedings of the National Academy of Sciences of the USA 87: 6127-6131.
- Nagata J., Masuda R. and Yoshida M. C. 1995. Nucleotide sequences of the cytochrome b and 12SrRNA genes in the Japanese sika deer. Journal of Mammal Science 20(1): 1-8.
- Ohtaishi N. 1992. The origins and evolution of deer in China. [In: The deer in China. H. L. Sheng, ed]. East China Normal University Press, Shanghai: 8-18. [In Chinese with English summary]
- Polziehn R. O. and Strobeck C. 1998. Phylogeny of wapiti, red deer, sika deer, and other north American cervids as determined from mitochondrial DNA. Molecular Phylogeny and Evolution 2: 249-258.
- Saitou N. and Nei M. 1987. The neighbor-joining method: New method for reconstructing phylogenetic trees. Molecular Biology Evolution 4: 406-425.
- Scott K. M. and Janis C. M. 1987. Phylogenetic relationships of the Cervidae, and the case for a superfamily Cervoidea. [In: Biology and management of the Cervidae. C. M. Węmmer, ed]. Smithsonian Institute Press, Washington, D. C.: 3-20.
- Sheng H. L. 1992. Family Moschidae. [In: The deer in China. H. L. Sheng, ed]. East China Normal University Press, Shanghai: 45-88. [In Chinese with English summary]
- Simpson G. G. 1945. Principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History 85: 1-350.
- Su B., WangY. X., Lan H., Wang W. and Zhang Y. P. 1999. Phylogenetic status of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Molecular Phylogeny and Evolution 3: 241-249.
- Swofford D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony. Version 3.1.1. Illinois Natural History Survey, Champaign, Illinois.
- Tamate H. B., Tatsuzawa S., Suda K, Izawa M., Doi T., Sunagawa K., Miyahira F. and Tado H. 1998. Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. Journal of Mammalogy 79: 1396-1403.
- Tamate H. B. and Tsuchiya T. 1995. Mitochondrial DNA polymorphism in subspecies of the Japanese sika deer, Cervus nippon. Journal of Heredity 3: 211-215.
- Thompson J. D., Higgins D. G. and Gibson T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Research 22: 4673-4680.
- Walsh P. S., Metzger D. A. and Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506-513.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-0e10b08b-a345-4910-917f-91417ee76192