Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2006 | 65 | 4 | 352-358
Tytuł artykułu

The neuronal structure of the dorsal nucleus of the lateral geniculate body in the common shrew [Sorex araneus] and the bank vole [Clethrionomys glareolus] : Golgi and Nissl studies

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The topography and neuronal structure of the dorsal nucleus of the lateral geniculate body (GLd) of the common shrew and the bank vole are similar. The lateral geniculate body of both the species examined has a homogeneous structure and no observable cytoarchitectonic lamination. On the basis of the shape of the dendritic arbours as well as the pattern of dendritic arborisations the following two types of neurons were distinguished. Type I “bushy” neurons that have multipolar or round perikarya (common shrew perikarya 9–12 µm, bank vole perikarya 10–13 µm), with 4–6 short thick dendritic trunks that subdivide into many bush-like branches. The dendritic trunks are smooth, in contrast to the distal branches, which are covered with numerous spine-like protrusions of different lengths and forms. An axon emerges from the soma, sometimes very close to one of the primary dendrites. The type I neurons are typically projection cells that send their axons to the primary visual cortex. These neurons predominate in the GLd of both species. Type II neurons, which have an elongated soma with primary dendrites arising from opposite poles of the perikaryon (common shrew perikarya 8–10 µm, bank vole perikarya 9–11 µm). The dendritic arbours of these cells are less extensive and their dendrites have fewer spines than those of the type I neurons. Axons were seldom observed. The type II neurons are presumably interneurons and are definitely less numerous than the type I neurons.
Wydawca
-
Czasopismo
Rocznik
Tom
65
Numer
4
Strony
352-358
Opis fizyczny
p.352-358,fig.,ref.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Plac Lodzki 3, 10-727 Olsztyn, Poland
autor
autor
autor
Bibliografia
  • 1. Ahlsen G, Lo FS (1982) Projection of brain stem neurons to the perigeniculate nucleus and the lateral geniculate nucleus in the cat. Brain Res, 238: 433–438.
  • 2. Brauer K, Schober W, Winkelmann E (1978) Phylogenetical changes and functional specializations in the dorsal lateral geniculate nucleus (dLGN) of mammals. J Hirnforsch, 19: 177–187.
  • 3. Brauer K, Werner L, Winkelmann E, Lüth H-J (1981) The dorsal lateral geniculate nucleus of Tupaia glis: a Golgi, Nissl and acetylcholinesterase study. J Hirnforsch, 22: 59–74.
  • 4. Conley M, Birecree E, Casagrande VA (1985) Neuronal classes and their relation to functional and laminar organization of the lateral geniculate nucleus: a Golgi study of the prosimian primate, Galago crassicaudatus. J Comp Neurol, 242: 561–583.
  • 5. Diamond IT, Conley M, Fitzpatrick D, Raczkowski D (1991) Evidence for separate pathways within the tecto-geniculate projection in the tree shrew. Proc Natl Acad Sci, 88: 1315–1319.
  • 6. Einstein G, Davis TL, Sterling P (1987) Pattern of lateral geniculate synapses on neuron somata in layer IV of the cat striate cortex. J Comp Neurol, 260: 76–86.
  • 7. Flett DL, Marotte LR, Mark RF (1988) Retinal projections to the superior colliculus and dorsal lateral geniculate nucleus in the tammar wallaby (Macropus eugenii): I. Normal topography. J Comp Neurol, 27: 257–273.
  • 8. Gabbott PL, Somogyi J, Stewart MG, Hámori J (1986) A quantitative investigation of the neuronal composition of the rat dorsal lateral geniculate nucleus using GABA-immunocytochemistry. Neuroscience, 19: 101–111.
  • 9. Graybiel AM, Berson DM (1980) Autoradiographic evidence for a projection from the pretectal nucleus of the optic tract to the dorsal lateral geniculate complex in the cat. Brain Res, 195: 1–12.
  • 10. Hajdu F, Hassler R, Wagner A (1982) The distribution of crossed and uncrossed optic fibers in the different layers of the lateral geniculate nucleus in the tree shrew (Tupaia glis). Anat Embryol, 164: 1–8.
  • 11. Harting JK, Huerta MF, Hashikawa T, Lieshout DP (1991) Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol, 304: 275–306.
  • 12. Hassler R, Hajdu F (1985) Architectonic differentiation of the lateral geniculate body of the cat. J Hirnforsch, 26: 245–257.
  • 13. Holcombe V, Guillery RW (1984) The organization of retinal maps within the dorsal and ventral lateral geniculate nuclei of the rabbit. J Comp Neurol, 225: 469–491.
  • 14. Hutchins JB, Casagrande VA (1990) Development of the lateral geniculate nucleus: interactions between retinal afferent, cytoarchitectonic, and glial cell process lamination in ferrets and tree shrews. J Comp Neurol, 298: 113–128.
  • 15. Kubota T, Morimoto M, Kanaseki T, Inomata H (1987) Projection from the pretectal nuclei to the dorsal lateral geniculate nucleus in the cat: a wheat germ agglutinin-horseradish peroxidase study. Brain Res, 421: 30–40.
  • 16. Lent R (1982) The organization of subcortical projections of the hamster’s visual cortex. J Comp Neurol, 206: 227–242.
  • 17. Mackay-Sim A, Sefton AJ, Martin PR (1983) Subcortical projections to lateral geniculate and thalamic reticular nuclei in the hooded rat. J Comp Neurol, 213: 24–35.
  • 18. Murphy PC, Duckett SG, Sillito AM (2000) Comparison of the laminar distribution of input from areas 17 and
  • 18 of the visual cortex to the lateral geniculate nucleus of the cat. J Neurosci, 20: 845–853.
  • 19. Norden JJ, Kaas JH (1978) The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase. J Comp Neurol, 182: 707–726.
  • 20. Perry VH, Ochler R, Cowey A (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience, 12: 1101–1123.
  • 21. Pu ML, Amthor FR (1990) Dendritic morphologies of retinal ganglion cells projecting to the lateral geniculate nucleus in the rabbit. J Comp Neurol, 302: 675–693.
  • 22. Raczkowski D, Fitzpatrick D (1990) Terminal arbors of individual, physiologically identified geniculocortical axons in the tree shrew’s striate cortex. J Comp Neurol, 302: 500–514.
  • 23. Reese BE, Cowey A (1983) Projection lines and the ipsilateral retino-geniculate pathway in the hooded rat. Neuroscience, 10: 1233–1247.
  • 24. Revishchin AV, Garey LJ (1993) Neuronal morphology in the lateral geniculate nucleus of the porpoise (Phocoena phocoena). J Hirnforsch, 34: 25–34.
  • 25. Sakai K, Jouvet M (1980) Brain stem PGO-on cells projecting directly to the cat dorsal lateral geniculate nucleus. Brain Res, 194: 500–505.
  • 26. Sterling P, Davis TL (1980) Neurons in cat lateral geniculate nucleus that concentrate exogenous [3H]-g-aminobutyric acid (GABA). J Comp Neurol, 192: 737–749.
  • 27. Sutton JK, Brunso-Bechtold JK (1988) The roles of specificity and competition in the formation of a laminated colliculogeniculate projection. J Neurosci, 8: 435–444.
  • 28. Szteyn S, (1968) Jądra ciał kolankowatych nutrii. Polskie Archiwum Weterynaryjne, 11: 337–346.
  • 29. Szteyn S, Bogus-Nowakowska K, Robak A, Najdzion J (2001) The neuronal structure of the dorsal lateral geniculate nucleus in the guinea pig: Golgi and Klüver-Barrera studies. Folia Morphol, 60: 79–83.
  • 30. Szteyn S, Galert D (1979) Nuclei of the geniculate bodies in the European beaver. Acta Theriologica, 10: 109–114.
  • 31. Tigges J, Tigges M (1987) Termination of retinofugal fibers and lamination pattern in the lateral geniculate nucleus of the gibbon. Folia Primatol (Basel), 48: 186–194.
  • 32. Tigges J, Tigges M, Perachio AA (1977) Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey. J Comp Neurol, 176: 87–100.
  • 33. Tömböl T, Madarász M, Hajdu F, Somogyi Gy, Gerle J (1978) Quantitative histological studies on the lateral geniculate nucleus in the cat. I. Measurements on Golgi material. J Hirnforsch, 19: 145–158.
  • 34. Towns LC, Burton SL, Kimberly CJ, Fetterman MR (1982) Projections of the dorsal lateral geniculate and lateral posterior nuclei to visual cortex in the rabbit. J Comp Neurol, 210: 87–98.
  • 35. Tsumoto T, Creutzfeldt OD, Legendy CR (1978) Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Exp Brain Res, 32: 345–364.
  • 36. Updyke BV (1975) The patterns of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. J Comp Neurol, 163: 377–395.
  • 37. Villar MJ, Vitale ML, Hökfelt T, Verhofstad AAJ (1988) Dorsal raphe serotoninergic branching neurons projecting both to the lateral geniculate body and superior colliculus: a combined retrograde tracing-immunohistochemical study in the rat. J Comp Neurol, 277: 126–140.
  • 38. Werner L, Brauer K (1984) Neuron types in the rat dorsal lateral geniculate nucleus identified in Nissl and deimpregnated Golgi preparations. J Hirnforsch, 25: 121–127.
  • 39. Werner von L, Wilke A (1985) Zur neuronalen Organisation des CGLd von Cavia porcellus. Eine morphometrische Untersuchung an Nissl-Präparaten unter Berück sichtigung identifizierter Neuronentypen. J Hirnforsch, 26: 1–16.
  • 40. Wilson JR, Hendrickson AE, Sherk H, Tigges J (1995) Sources of subcortical afferents to the macaque’s dorsal lateral geniculate nucleus. Anat Rec, 242: 566–574.
  • 41. Wróbel A (2000) Beta activity: a carrier for visual attention. Acta Neurobiol Exp, 60: 247–260.
  • 42. Zahs KR, Stryker MP (1985) The projection of the visual field onto the lateral geniculate nucleus of the ferret. J Comp Neurol, 241: 210–224.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-0ce983fc-507d-444e-89c7-d6e29847d6f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.