Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 43 | 1 |
Tytuł artykułu

The NTP phosphate donor in kinase reactions: Is ATP a monopolist?

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This brief overview describes some of the properties of various cellular phospho­transferase systems, with particular emphasis on nucleoside 5'-triphosphate (NTP)- dependent protein kinases and nucleoside kinases, for which it is widely and impli­citly assumed that ATP is the intracellular phosphate donor. Numerous examples are presented, based on the in vitro properties of these enzymes, to show that ATP is not the only, or frequently not even the major, phosphate donor, and that this is probably reflected in vivo. It is pointed out that in vitro studies of donor and acceptor speci­ficities of kinases must take account of the intracellular concentrations of nucleoside 5-triphosphates, a problem also relevant to the design of nucleoside analogues as chemotherapeutic agents. Attention is also drawn to NTP analogues as substrates/ inhibitors of protein kinases, and to several examples of low-molecular mass non- peptide substrates of these enzymes.
Wydawca
-
Rocznik
Tom
43
Numer
1
Opis fizyczny
p.9-23,fig.
Twórcy
autor
  • Polish Academy of Sciences, A.Pawinskiego 5a, 02-106 Warsaw, Poland
Bibliografia
  • 1. Plunkett, W. & Saunders, P.P. (1991) Metabolism and action of purine nucleoside analogues. Pharmacol. Ther. 49, 239-268.
  • 2. Shugar, D. (1992) Phosphorylating enzymes involved in activation of chemotherapeutic nucleosides and nucleotides; in Molecular Aspects of Chemotherapy (Shugar, D., Rode, W. & Borowski, E., eds.) pp. 239-270, Springer-Verlag, Berlin & New York.
  • 3. Lindberg, R.A., Quinn, A.M. & Hunter, T. (1992) Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem. Sci. 17,114-119.
  • 4. Hunter, T. (1994) 1001 protein kinases redux - towards 2000. Seminars Cell Biol. 5,367-376.
  • 5. Frey, P.A. & Arabshahi, A. (1995) Standard free energy change for the hydrolysis of the a,p-phosphoanhydride bridge in ATP. Biochemistry 34,11308-11310.
  • 6. Kornberg, A. (1995) Inorganic polyphosphate: Toward making a forgotten polymer unforgettable. /. Bacteriol. 177,491-^96.
  • 7. Kaji, A. & Colowick, S.P. (1965) Adenosine triphosphatase activity of yeast hexokinase and its relation to the mechanism or the kinase reaction. /. Biol. Chem. 240.4454-4462.
  • 8 Hohnadei. D.C. & Cooper. C. (1972) The effect of structural modifications of ATP on the yeast -hexokinase reaction. Eur. ]. Biochem. 31. 180- 185.
  • 9. Szkopiriska, A., Nowak, L., £wiezewska, E. & Palamarczyk, G. (1988) CTP-dependent lipid kinases of veast. Arch. Biochem. Biophys. 266, 124-131.
  • 10. Traut, T.W. (1994) Physiological concentrations of purines and pvrimidines. Mol. Cell. Biochent. 140, 1-22.
  • 11. White. J.C. & Capizzi, R.L. (1991) A critical role for uridine nucleotides in the regulation of deoxycvtidine kinase and the concentration dependence of l-p-oarabinofuranosylcvtosine phosphorylation in human leukemia cell lines. Cancer Res. 51,2559-2565.
  • 12. Shevvach, D.S., Reynolds, K.K. & Hertel, L. (1992) Nucleotide specificity of human deoxveytidine kinase. Mol. Pharmacol. 42, 518-524.
  • 13. Hsieh, P.-C.,Shenoy, B.C.,Jentoft,J.E.& Phillips, N.F.B. (1995) Purification of polyphosphate and ATP glucose phosphotransferase from Myco­bacterium tuberculosis H37Ra: Evidence that poly(P) and ATP glucokinase activities are catalyzed by the same enzyme. Protein Exp. Purif. 4, 76-84.
  • 14. McElwain, M.C. & Pollack, J.D. (1987) Synthesis of deoxyribomononucleotides in Mollicutes: Dependence on deoxyribose-1-phosphate and PPi. /. Bacteriol. 169,3647-3653.
  • 15. de Silva, L.P., Lindahl, M., Lundin, M. & Baltscheffsky, H. (1991) Protein phospho­rylation by inorganic pyrophosphate in yeast mitochondria. Biochem. Biophys. Res. Commun. 178, 1359-1364.
  • 16. Mertens, E. (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett. 285, 1-5.
  • 17. Kengan, S.W.M.,de Bok, F. A.M., van Loo. N.-D., Dijkema, C.,Stams, A.J.M. & de Vos, W.M. (1994) Evidence for the operation of a novel Embden- Meverhof pathway that involves ADP-depen- dent kinases during sugar fermentation by Pyrococcus furiosus. /. Biol. Chem. 269, 17537-17541.
  • 18. Saier. M.H., Jr. & Reizer, J. (1994) The bacterial phosphotransferase system: new frontiers 30 years later. Mol. Microbiol. 13,755-764.
  • 19. Khandewal, R.L., Mattoo, R. & Wavgood, E.B. (1983) Phosphoenolpyruvate-dependent pro­tein kinase activity in rat skeletal muscle. FEBS Lett. 162,127-132.
  • 20. Seydel, U. & Huttner, W.B. (1988) Phospho­rylation of an 85-kDa membrane protein by a novel mechanism. EMBO J. 7.4163-4167.
  • 21. Cheng, N., Payne, R.C. & Traut, T.W. (1986) Regulation of uridine kinase: Evidence for a regulatory site. J. Biol. Chem. 261,13006-13012.
  • 22 Arner, E.S.J. & Eriksson, S. (1995) Mammalian deoxvribonucleoside kinases. Pharmacol. Ther. 67, 155-186.
  • 23. Gentry, G.A. (1992) Viral thymidine kinases and their relatives. Pharmacol. Ther. 54. 319-355.
  • 24. Kit, S. (1985) thymidine kinase. Microbiol. Sci. 2, 369 375.
  • 25. Black, M.E. & Hruby, D.E (1990) Identification of the ATP-binding domain of vaccinia virus thvmidine kinase. /. Biol. Chem. 265, 17584-17592.
  • 26. Miller, R.L., Adamczyk, D.L., Rideout, J.L. & Krenitsky, T.A. (1982) Purification, charac­terization, substrate and inhibitor specificity of adenosine kinase from several Eimeria species. Mol. Biochem. Parasitol. 6,209 233.
  • 27. Bontemps, F., Mimouni, M. & Van den Berghe, G. (1993) Phosphorylation of adenosine in anoxic hepatocytes by an exchange reaction cataJvzed bv adenosine kinase. Biochem. J. 290, 679-684.
  • 28. Park, I. & Ives, D.H. (1988) Properties of a highly purified mitochondrial deoxyguanosine kinase. Arch. Biochem. Biophys. 266,51-60.
  • 29. Ikeda, S., Chakravarty, R. & Ives, D.H. (1986) Multisubstrate analogs for deoxynucleoside kinases. Triphosphate end products and syn­thetic bisubstrate analogs exhibit identical modes for distinguishing kinetic mechanisms. /. Biol. Chem. 261,15836-15843.
  • 30. Shugar, D. (1994) Development of inhibitors of protein kinases CK-I and C'K-Il, and some related aspects, including donor and acceptor specificities, and viral protein kinases. Cell. Mol. Biol. Res. 40,411-419.
  • 31. Krawiec, K., Kierdaszuk, B., Eriksson, S., Munch-Petersen, B. & Shugar, D. (1995) Nucleoside triphosphate donors for nucleoside kinases: Donor properties of UTP with human deoxycytidine kinase. Biochem. Biophys. Res. Commun. 216, 42 48.
  • 32. Wong, T.W. & Goldberg, A.R. (1984) Purification and characterization of the major species of tyrosine protein kinase in rat liver. J. Biol. Chem. 259,8505-8512.
  • 33. Gschwendt, M., Kittstein, W., Kielbassa, K. & Marks. F. (1995) Protein kinase C accepts GTP for autophosphorylation. Biochetn. Biophys. Res. Commun. 206,614-620.
  • 34. Dekker, L.V. & Parker, P.J. (1994) Protein kinase C —a question of specificity. Trends Biochem. Sei. 19.73-77.
  • 35. Kielbassa, K., Müller. H.-J., Meyer, H.G.. Marks, F. & Gschwendt, M. (1995) Protein kinase C 6-specific phosphorylation of the elongation factor eEF-la and an eEF-la peptide at threonine 431. J. Biol. Chem. 270. 6156 6162.
  • 36. Yuan, C.-J., Huang. C.-Y.F. & Graves. D.J. (1993) Phosphorylase kinase, a metal ion-dependent dual specificity kinase. /. Biol. Chem. 268. 17683-17686.
  • 37. Taylor, S.S., Radzio-Andzelm. E. & Hunter, T. (1995) How do protein kinases discriminate between serine-threonine and tyrosine? Struc­tural insights from the insulin receptor prolein- tvrosine kinase. FASEB /. 9,1255-1266.
  • 38 Bossemeyer, D., Erigh, R.A., Kinzel, V.. Pons- tingl, H. & Huber, R. (1993) Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2" adenylyl imidophosphateand inhibitor peptide PK J (5-24). EM BO /. 12.849-859.
  • 39. Ramamoorthy, S. & Balasubramanian, A.S. (1991) Zn2*-dependent tyrosine phosphory­lation of a 68-kDa protein and its differentiation from Mg2""-dependent tyrosine phosphory­lation in sheep platelets. Arch. Biochem. Biophys. 286. 433-440.
  • 40. Zick, Y., Kasuga. M., Kahn, R. & Roth, J. (1983) Characterization of insulin-mediated phospho­rylation of the insulin receptor in a cell-tree system. J. Biol. Chem. 258,75-80.
  • 41. Friedrich. T.D. & Ingram, V.M. (1989) Identi­fication of a novel casein kinase activity in Hel a cell nuclei. Biochim. Biophys. Acta 992, 41 48.
  • 42. Flockhart, D.A., Freist. W., Hoppe.J., Lincoln. T.M. &Corbin, J.D. (1984) ATPanalog specificity of cAMP-dependent protein kinase cGTP- dependent protein kinase and phosphorylase kinase. Eur. J. Biochetn. 140, 2S9-295.
  • 43. Joao, H.C. & Williams, R.J.P. (1993) The anatomy of a kinase and the control of phosphate transfer. Eur. /. Biochem. 216,1-18.
  • 44. Bolduc, J.M., Dyer, D.H., Scott, W.G., Singer. P.. Sweet, R.M., Koshland. D.E.. Jr. & Stoddard. B.L (1995) Mutagenesis and l.aue structures of enzyme intermediates: Isocitrate dehydro­genase. Science 268, 1312-1318.
  • 45. Coan, C., Amaral, J.A. & Verjovski-Almeida, S. (1993) Elimination of the hvdroxyl group in the ribose ring of ATP reduces its ability to phosphorylate the sarcoplasmic reticulum CaV-ATPase. /. Biol. Chem. 268,6917-6924.
  • 46. Shugar, D. (1995) Protein kinase inhibitors — potential chemotherapeutic agents; in 5th International Symposium on Molecular Aspects of Chemotherapy. Acta Biochim. Polon. 42, 405-418.
  • 47. Stolarski, R., Pohorille, A.. Dudycz, L. & Shugar, D. (1980) Comparison of theoretical and experimental approaches to determination of conformation of nucleosides about the glycosidic bond. Biochim. Biophys. Acta 610, 1-19.
  • 48. Leonard, N.J. & Laursen, R.A. (1965) Synthesis and properties of analogs of adenosine diphos­phate, adenosine triphosphate, and nico- tinamid-adenine dinucleotide derived from 3-ft-D-ribofuranosyladenine (3-isoadenosine). Biochemistry 4, 365-376.
  • 49. l^onard, N.J.,Cruickshank, K.A..Groziak, M.P., Clauson, G.L. & Dewadas, B. (1986) Relatives of Watson-Crick DNA, RNA cross sections. Ann. N.Y. Acad. Sci. U.S.A. 471, 255-265.
  • 50. Kumar, S., Wilson. S.R. & Leonard, N.J. (1988) Structure of 3-isoadenosine. Acta Cryst. C44, 508-510.
  • 51. Li, H.-C., Simonelli, P.F. & Huan, L.-J. (1988) Preparation of protein phosphatase-resistant substrates using adenosine 5'-0-(Y-lhio)tri- phosphate. Methods Enzymol. 159, 346-356.
  • 52. Noel, J.P., 1 lamm, H.E. & Sigler, P.B. (1993) The 2.2 A crystal structure of transducin-a com- plexed with GTP>S. Nature (London) 366, 654-663.
  • 53. Srivastava, S.K., Varma, T.K., Sinha, A.C. & Singh, U.S. (1994) Guanosine 5'-(?-thio)tri- phosphate (GTPyS) inhibits phosphorylation of insulin receptor and a novel GTP-binding protein, Gir from human placenta. FEBS Lett. 340, 124-128.
  • 54. Richert, N.D., Blithe, D.L & Pastan. I. (1982) Properties of the sre kinase purified from Rous sarcoma virus-induced rat tumors. /. Biol. Chem. 257, 7143-7150.
  • 55. Graziani, Y., Erikson, E. & Erikson, R.L. (1983) Evidence that the Rous sarcoma virus trans­forming gene product is associated with glvcerol kinase activity. /. Biol. Chem. 258, 21*26-2129.
  • 56. Braun, S., Ghanv, M.A. & Racker, E. (1983) A rapid assay for protein kinases phosphorvlating small polypeptides and other substrates. Anal. Biochem. 135,369-378.
  • 57. Sugimoto, Y., Whitman, M., Cantley. L.C. & Erikson, R.L (1984) Evidence that the Roussarcoma virus transforming gene product phosphorvlates phosphatidylinositol and diacylglvcerol. Proc. Nail. Acad. Set. U.S.A. 81. 2117-2121.
  • 58. Macara, I.G., Marinetti, G.V. & Balduzzi, P.C. (1984) Transforming protein of avian sarcoma virus UR2 is associated with phospha­tidylinositol kinase activity: Possible role in tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 81, 2728-2732.
  • 59. Georgoussi, Z. & Heilmever, LM.G., Jr. (1986) Evidence that phosphorvlase kinase exhibits pnosphatidvlinositol kinase activity. Bioche­mistry 25. 3867-3874.
  • 60. Littler, E.. Sttuart. A.D. & Chee, MS. (1992) Human cvtomegolovirus UL97 open reading frame encodes a protein that phosphorvlates the antiviral nucleoside analog ganciclovir. Nature (London) 358,160-162.
  • 61. Sullivan. V.. Talarico, C.L., S tana I, S.C., Davis, M., Coen, D.M. <k Biron, K.K. (1992) A protein kinase homologue controls phosphorylation of ganciclovir in human cvtomegalovirus-infected cells. Nature (London) 358.162-164.
  • 62. Lurain, N.S., Spafford, L.F.. & Thompson, K.D. (1994) Mutation in the UL97open reading frame of human cytomegalovirus strains resistant to ganciclovir./. Virol 68. 4427-4431.
  • 63. Kwon, V.G., Srinwasan, J., Mendelow, M., Pluskev, S. & Lawrence. D.S. (1993) The cAMP-dependent protein kinase discriminates between prochiral hydroxy] groups. J. Am. Chem. Soc. 115, 7527-7528.
  • 64 Shugar, D. (1995) Protein kinases — enticing targets for antiviral agents. Intern. Antiviral Keios 3, 4-6.
  • 65.Metzger,C., Michel, D.,Schneider, K., Liiske, A., Schlicht, H.-J. & Mertens, T. (1994) Human cyto­megalovirus UL97 kinase confers ganciclovir susceptibility to recombinant vaccinia virus. /. Virol. 68,8423-8427.
  • 66.Adams, V., Schieber, A. & McCabe, E.R.B. (1994) Hexokinase autophosphorvlation: Identi­fication of a new dual specificity kinase. Biochem. Med. Metabol. Binl 53, 80-86.'
  • 67 Arora, K.K. & Pedersen, P.I.. (1993) Glucose uti­lization by tumor cells: The enzyme hexokinase autophosphorylates both its N- and C-terminal halves. Arch. Biochem. Biophys. 304,515-518.
  • 68. Herrero, P.. Fernandez, R. & Morens, F. (19S9) The hexokinase isoenzyme PII of Saccharomyces cerevisiae is a protein kinase. ). Gen. Microbiol. 135, 1209-1216.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-0ba55ffd-5e97-4719-9e8f-4b76a9e7c326
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.