Warianty tytułu
Języki publikacji
Abstrakty
Plants have developed different strategies to adapt to various stress conditions including drought. In the present study the drought-induced changes in the actin filament (AFs) network was studied, for the first time, in two barley cultivars of contrasting drought tolerance level. Detached leaves of drought-tolerant (cv. ‘CAM/B1/ CI’) and drought-susceptible (cv. ‘Maresi’) cultivars were dried under controlled conditions. The water relations as well as the transcript accumulation of actin (ACT11), actin depolymerization factor (ADF1) and dehydrine HVA1) encoding genes were studied using qRT-PCR. Quantitative (the relative fluorescence index; RFI) and qualitative drought-induced changes in AF cytoskeleton were observed following staining with phalloidin. It was noticed that tolerant cultivar was characterized with relative water content decreased during drought treatment which was accompanied by increase in HVA1 expression together with decrease in ACT11 and ADF1 transcripts accumulation induced by drought. In drought-susceptible cultivar the expressions of both ACT11 and ADF1 were slightly lower than those in the control. Drought triggeredan extensive AF cytoskeleton reorganization within different types of leaf-blade cells. Remarkable changes in AF configuration and its increased amount (fluorescence intensity) were observed mainly in drought-tolerant cultivar. In addition, drought-induced changes in AFs were closely associated with chloroplasts. Those AFs probably controlled drought-induced intracellular chloroplast positioning in mesophyll. Based on the results obtained in the present study, the possible role of AF rearrangements in drought response is discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Article: 73 [13 p.], fig.,ref.
Twórcy
autor
- Department of Plant Physiology, University of Agriculture in Krakow, Podluzzna 3, 30-239 Krakow, Poland
autor
- Franciszek Gorski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
- Department of Plant Physiology, University of Agriculture in Krakow, Podluzzna 3, 30-239 Krakow, Poland
Bibliografia
- Baluška F, Barlow PW (1993) The role of the microtubular cytoskeleton in determining nuclear chromatin structure and passage of maize root cells through the cell cycle. Eur J Cell Biol 61:160–167
- Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133(2):482–491. doi:10. 1104/pp.103.027250
- Barrs HD (1968) Determination of water deficits in plant tissues. In: Kozlowski TT (ed) Water deficits and plant growth, vol 1. Academic Press, New York, pp 235–368
- Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58. doi:10.1080/07352680590910410
- Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264. doi:10.1071/FP02076
- Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236. doi:10.1093/jxb/erh005
- Dubas E, Wedzony M, Custers J, Kieft H, van Lammeren AAM (2012) Gametophytic development of Brassica napus pollen in vitro enables examination of cytoskeleton and nuclear movements. Protoplasma 249:369–377. doi:10.1007/s00709-011-0287-0
- Dubas E, Custers J, Kieft H, We˛dzony M, van Lammeren AAM(2013) Characterization of polarity development through 2- and 3-D imaging during the initial phase of microspore embryogenesis in Brassica napus L. Protoplasma. doi:10.1007/s00709-013-0530-y
- Filek M, Łabanowska M, Kościelniak J, Biesaga-Kościelniak J, Kurdziel M, Szarejko I, Hartikainen H (2014) Characterization of barley leaf tolerance to drought stress by chlorophyll fluorescence and electron paramagnetic resonance studies. J Agro Crop Sci. doi:10.1111/jac.12063
- Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847–854. doi:10.1016/S0896-6273(00)80467-5
- Johnson BD, Byerly L (1993) A cytoskeletal mechanism for Ca2+channel metabolic dependence and inactivation by intracellular Ca2+. Neuron 10:797–804. doi:10.1016/0896-6273(93)90196-X
- Kawaguchi R, Wilhiams AJ, Bray EA, Bailey-Serres J (2003) Waterdeficit-induced translational control in Nicotiana tabacum. Plant Cell Environ 26:221–229. doi:10.1046/j.1365-3040.2003.00952.x
- Komis G, Apostolakos P, Galatis B (2002) Hyperosmotic stressinduced actin filament reorganization in leaf cells of Chlorophyton comosum. J Exp Bot 53:1699–1710. doi:10.1093/jxb/erf018
- Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
- Liu K, Luan S (1998) Voltage-dependent K+ channels as targets of osmosensing in guard cells. Plant Cell 10:1957–1970. doi:10.1105/tpc (10. 11. 1957)
- Liu J, Raveendran M, Mushtaq R, Ji X, Yang X, Bruskiewich R, Katiyar S, Cheng S, Lafitte R, Bennett J (2003) Proteomic analysis of drought-responsiveness in rice: OsADF5. In: Tuberosa R, Phillips RL, Gale M (ed) Proceedings of the International Congress ‘In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution’, 27–31 May 2003, Bologna, Italy, pp 491–505
- Livak KJ, Schmittgen YD (2001) Analysis of elative gene expression data using Real-Time quantitative PCR and the DDCt method. Methods 25:402–408. doi:10.1006/meth.2001.1262
- Luan S (2002) Signaling drought in guard cells. Plant Cell Environ 25:229–237. doi:10.1046/j.1365-3040.2002.00758.x
- Maai E, Shimada S, Yamada M, Sugiyama T, Miyake H, Taniguchi M (2011) The avoidance and aggregative movements of mesophyll chloroplasts in C4 monocots in response to blue light and abscisic acid. J Exp Bot 62:3213–3221. doi:10.1093/jxb/err008
- Meyer RF, Boyer JS (1972) Sensitivity of cell division and cell elongation to low water potentials in soybean hypocotyls. Planta 108:77–87. doi:10.1007/BF00386508
- Ouellet F, Carpentier E, Cope M, Jamie TV, Monroy AF, Sarhan F (2001) Regulation of a wheat actin-depolymerizing factor during cold acclimation. Plant Physiol 125:360–368. doi:10.1104/pp. 125.1.360
- Qian G, Han Z, Zhao T, Deng G, Pan Z, Yu M (2007) Genotypic variability in sequence and expression of HVA1 gene in Tibetan hulless barley, Hordeum vulgare ssp. vulgare, associated with resistance to water deficit. Aust J Agric Res 58:425–431. doi:10.1071/AR06300
- Rapacz M, Kościelniak J, Jurczyk B, Adamska A, Wójcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). J Agron Crop Sci 196:9–19. doi:10.1111/j.1439-037X.2009.00389.x
- Rapacz M, Stępień A, Skorupa K (2012) Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age. Acta Physiol Plant 34:1723–1733. doi:10.1007/s11738-012-0967-1
- Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 30:1143–1151. doi:10.1104/pp.006858
- Rosenmund C, Westbrook GL (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10:805–814. doi:10.1016/0896-6273(93)90197-Y
- Schmidt von Braun S, Schleiff E (2008) The chloroplast outer membrane protein CHUP1 interacts with actin and profiling. Planta 227:1151–1159. doi:10.1007/s00425-007-0688-7
- Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. doi:10.1093/jxb/erl164
- Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi:10.1016/S1369- 5266(03)00092-X
- Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9. doi:10.1016/S0168-9452(99)00247-2
- Staiger CJ (2000) Signaling to the actin cytoskeleton in plants. Annu Rev Plant Phys 51:257–288. doi:10.1146/annurev.arplant.51.1.257
- Staiger CJ, Schliwa M (1987) Actin localization and function in higher plants. Protoplasma 141:1–12. doi:10.1007/BF01276783
- Tsuboi H, Wada M (2011) Chloroplasts can move in any direction to avoid strong light. J Plant Res 124:201–210. doi:10.1007/s10265-010-0364-z
- Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Biol 54:691–722. doi:10.1146/annurev.arplant.54.031902.134818
- Wasteneys GO, Yang Z (2004) The cytoskeleton becomes multidisciplinary. Plant Physiol 136(4):3853–3854. doi:10.1104/pp.104.900130
- Wójcik-Jagła M, Rapacz M, Barcik W, Janowiak F (2012) Differential regulation of barley (Hordeum distichon) HVA1 and SRG6 transcript accumulation during the induction of soil and leaf water deficit. Acta Physiol Plant 34:2069–2078. doi:10.1007/s11738-012-1004-0
- Yamashita H, Sato Y, Kanegae T, Agawa T, Wada M, Kadota A (2011) Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens. Planta 233:357–368. doi:10.1007/s00425-010-1299-2
- Yang L, Zheng BS, Mao CZ, Yi KK, Liu FY, Wu YR, Tao QN, Wu P (2003) cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene 314:141–148. doi:10.1016/S0378-1119(03)00713-3
- Yoshimura K, Masuda A, Kuwano M, Kokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49(2):226–241. doi:10.1093/pcp/pcm180
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-af7ff183-b187-44d8-ac7e-9adb816c428d