Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |
Tytuł artykułu

The response of Mo-hydroxylases and abscisic acid to salinity in wheat genotypes with differing tolerances

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The differential responses of the wheat cultivars Shi4185 and Yumai47 to salinity were studied. The higher sensitivity of Yumai47 to salinity was linked to a greater growth reduction under salt stress, compared to more salt-tolerant Shi4185. Salinity increased the Na⁺, proline and superoxide anion radical (O₂⁻) contents in both cultivars. Leaf Na⁺ content increased less in the more salttolerant cultivar Shi4185 than salt-sensitive Yumai47. The proline content increased more significantly in Shi4185 than Yumai47; on the contrary, superoxide anion radical content increased less in Shi4185 than Yumai47. This data indicated that wheat salinity tolerance can be increased by controlling Na⁺ transport from the root to shoot, associated with higher osmotic adjustment capability and antioxidant activity. Although salinity increased aldehyde oxidase (AO) activity and abscisic acid (ABA) content in the leaves and roots of both cultivars following the addition of NaCl to the growth medium, AO and ABA increased more in the salt-sensitive cultivar Yumai47 than the more salt-tolerant cultivar Shi4185. Xanthine dehydrogenase (XDH) activity in the leaves of both cultivars increased with increasing concentrations of NaCl; however, leaf XDH activity increased more significantly in Yumai47 than Shi4185. Root XDH activity in Shi4185 decreased with increasing NaCl concentrations, whereas salinity induced an increased root XDH activity in Yumai47. The involvement of AO and XDH enzymatic activities and altered ABA content in the response mechanisms of wheat to salinity are discussed herein.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
34
Numer
5
Opis fizyczny
p.1767-1778,fig.,ref.
Twórcy
autor
  • College of Agronony, Henan Agricultural University, 450002 Zhengzhou, China
autor
  • Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of BioScience and Technology, College of Agriculture, Hainan University, 570228 Haikou, China
autor
  • College of Agronony, Henan Agricultural University, 450002 Zhengzhou, China
autor
  • College of Agronony, Henan Agricultural University, 450002 Zhengzhou, China
autor
  • Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of BioScience and Technology, College of Agriculture, Hainan University, 570228 Haikou, China
autor
  • College of Agronony, Henan Agricultural University, 450002 Zhengzhou, China
autor
  • College of Agronony, Henan Agricultural University, 450002 Zhengzhou, China
autor
  • Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of BioScience and Technology, College of Agriculture, Hainan University, 570228 Haikou, China
Bibliografia
  • Barabas NK, Omarov RT, Erdei L, Lips SH (2000) Distribution of the Mo-enzymes aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity. Plant Sci 155:49–58
  • Bates LS, Waldran RP, Teare ID (1973) Rapid determination of free proline for water studies. Plant Soil 39:205–208
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72:248–254
  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55:1115–1123
  • Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57(5):1079–1095
  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 8(2):227–255
  • Hare PD, Cress WA, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434
  • He T, Cramer GR (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid-cycling Brassica species. Plant Soil 179:25–33
  • Heidari-Sharifabad H, Mirzaie-Nodoushan H (2006) Salinity-induced growth and some metabolic changes in three Salsola species. J Arid Environ 67:715–720
  • Hesberg C, Hansch R, Mendel RR, Bittner F (2004) Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana. J Bio Chem 279:13547–13554
  • Hu Y, Schmidhalter U (1998) Spatial distributions of inorganic ions and sugars contributing to osmotic adjustment in the elongating wheat leaf under saline soil conditions. Aust J Plant Physiol 25:591–597
  • Jiang X, Wang C (2007) Cadmium distribution and its effects on molybdate-containing hydroxylases in Phragmites australis. Aquat Bot 86:353–360
  • Jiang XY, Omarov RT, Yesbergenova SZ, Sagi M (2004) The effect of molybdate and tungstate in the growth medium on abscisic acid content and the Mo-hydroxylases activities in barley (Hordeum vulgare L.). Plant Sci 167:297–304
  • Kaiser WM (1987) Effect of water deficit on photosynthetic capacity. Physiol Plant 71:142–149
  • Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T (2004) Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134: 1697–1707
  • Koshiba T, Saito E, Ono N, Yamamoto N, Sato M (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coloptiles of maize. Plant Physiol 110:781–789
  • Lambers H (1985) Respiration in intact plants and tissues: its regulation and dependence on environmental factors, metabolism and invaded organisms. In: Douce R, Day DA (eds) Encyclopedia of plant physiology. New series, vol 18. Springer, Berlin, pp 418–473
  • Levine RL, Garland D, Oliver C, Amici A, Clement I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carboxyl content in oxidatively modified proteins. Methods Enzymol 186:464–478
  • Li Z, Gong M (2005) Improvement of measurement method for superoxide anion radical in plant. Acta Botanica Yunnanica 27(2):211–216
  • Meneguzzo S, Navari-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to salinity. J Plant Physiol 155:274–280
  • Montalbini P (1998) Purification and some properties of xanthine dehydrogenase from wheat leaves. Plant Sci 134:89–102
  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681
  • Munns R, James RA, Lauchli A (2005) Increasing salt tolerance in monocotyledonous plants, with emphasis on wheat. Comp Biochem Physiol 141:S337
  • Nguyen J (1986) Plant xanthine dehydrogenase: its distribution, properties and function. Physiol Veg 24:163–281
  • Omarov RT, Sagi M, Lips SH (1998) Regulation of aldehyde oxidase and nitrate reductase in roots of barley (Hordeum vulgare L.) by nitrogen source and salinity. J Exp Bot 49(322):897–902
  • Pastori CM, Del Rio LA (1997) Natural senescence of pea leaves. An activated oxygen-mediated function for peroxisomes. Plant Physiol 113:411–418
  • Rhodes D (1987) Metabolic responses to stress. In: Stumpf PK, Priess J (eds) The Biochemistry of Plants, vol 12. Academic Press, San Deigo, pp 201–241
  • Sagi M, Omarov RT, Lips SH (1998) The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity. Plant Sci 135:125–135
  • Sagi M, Fluhr R, Lips SH (1999) Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol 120:571–577
  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046
  • Santos CX, Anjos EI, Augusto O (1999) Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys 372(2): 285–294
  • Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T (2000) Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J 23:481–488
  • Shalata A, Mittovab V, Volokitab M, Guyb M, Talb M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494
  • Smirnoff N, Cumbes QT (1989) Hydroxyl radicals scavenging activity of compatible isolates. Phytochemisiry 28:1057–1060
  • Szepesi A, Csiszar J, Gemes K, Horvath E, Horvath F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na⁺ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925
  • Turan MA, Katkat V, Taban S (2007) Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress. J Agron 6(1):137–141
  • Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisisc acid. Plant J 42:862–876
  • Zdunek-Zastocka E (2008) Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. Plant Physiol Biochem 46:19–28
  • Zhu JK (2007). Plant salt stress. In: Encyclopedia of life sciences. Wiley, Chichester doi:10.1002/9780470015902.a0001300.pub2
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-ac2f6726-7618-405b-a588-d37fe47f805e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.