Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 32 | 2 |
Tytuł artykułu

Elevated CO2 ameliorated oxidative stress induced by elevated O3 in Quercus mongolica

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using open top chambers, the effects of elevated O₃ (80 nmol mol⁻¹) and elevated CO₂ (700 µmol mol⁻¹), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O₃ increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO₂, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O₃ stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO₂ exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O₃ treatment. It indicates that the protective effect of elevated CO₂ against O₃ stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O₃ significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO₂ suppressed the O₃-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO₂ increased total phenolics content in the leaves both under ambient O₃ and elevated O₃ exposure, which might contribute to the protection against O₃-induced oxidative stress as well.
Wydawca
-
Rocznik
Tom
32
Numer
2
Opis fizyczny
p.375-385,fig.,ref.
Twórcy
autor
  • Department of Urban Forest, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China
  • Graduate School of the Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
autor
  • Department of Urban Forest, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China
autor
  • Department of Urban Forest, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China
  • Graduate School of the Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
autor
  • Department of Urban Forest, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China
autor
  • Department of Urban Forest, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China
  • Graduate School of the Chinese Academy of Sciences, 100049 Beijing, People’s Republic of China
autor
  • Department of Urban Forest, Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, People’s Republic of China
autor
  • College of Chemical and Life Science, Shenyang Normal University, 110034 Shenyang, People’s Republic of China
Bibliografia
  • Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28:1012–1020. doi:10.1111/j.1365-3040.2005.01326.x
  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566. doi:10.1016/0003-2697(87)90489-1
  • Booker FL, Fiscus EL (2005) The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO₂ in soybean. J Exp Bot 56:2139–2151. doi:10.1093/jxb/eri214
  • Broadmeadow MSJ, Jackson SB (2000) Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytol 146:437–451. doi:10.1111/j.1469-8137.2000.00665.x
  • Cabane M, Pireaux JC, Leger E, Weber E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol 134:586–594. doi: 10.1104/pp.103.031765
  • Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO₂ exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116:308–316. doi:10.1034/j.1399-3054.2002.1160305.x
  • Chen GY, Yong ZH, Liao Y, Zhang DY, Chen Y, Zhang HB, Chen J, Zhu JG, Xu DQ (2005) Photosynthetic acclimation in rice leaves to free-air CO₂ enrichment related to both ribulose-1, 5-bisphosphate carboxylation limitation and ribulose-1, 5-bisphosphate regeneration limitation. Plant Cell Physiol 46:1036–1045. doi:10.1093/pcp/pci113
  • Chernikova T, Robinson JM, Lee EH, Mulchi CL (2000) Ozone tolerance and antioxidant enzyme activity in soybean cultivars. Photosynth Res 64:15–26
  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974
  • Darbah JNT, Kubiske ME, Nelson N, Oksanen E, Vapaavuori E, Kamosky DF (2008) Effects of decadal exposure to interacting elevated CO₂ and/or O₃ on paper birch (Betula papyrifera) reproduction. Environ Pollut 155:446–452. doi:10.1016/j.envpol.2008.01.033
  • Davey MW, Dekempeneer E, Keulemans J (2003) Rocket-powered high-performance liquid chromatographic analysis of plant ascorbate and glutathione. Anal Biochem 316:74–81. doi:10.1016/S0003-2697(03)00047-2
  • Di Baccio D, Castagna A, Paoletti E, Sebastiani L, Ranier A (2008) Could the differences in O₃ sensitivity between two poplar clones be related to a difference in antioxidant defense and secondary metabolic response to O₃ influx? Tree Physiol 28:1761–1772
  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO₂? Annu Rev Plant Physiol Plant Mol Biol 48:609–639. doi:10.1146/annurev.arplant.48.1.609
  • Farage PK, Long SP (1999) The effects of O₃ fumigation during leaf development on photosynthesis of wheat and pea: an in vivo analysis. Photosynth Res 59:1–7. doi:10.1023/A:1006161724099
  • Felzer BS, Cronin T, Reilly JM, Melilloa JM, Wang XD (2007) Impacts of ozone on trees and crops. C R Geosci 339:784–798. doi:10.1016/j.crte.2007.08.008
  • Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32. doi: 10.1023/A:1005249231882
  • Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover clones exposed to ozone. Environ Exp Bot 60:11–19. doi:10.1016/j.envexpbot.2006.06.004
  • Gaucher C, Costanzo N, Afif D, Mauffette Y, Chevrier N, Dizengremel P (2003) The impact of elevated ozone and carbon dioxide on young Acer saccharum seedlings. Physiol Plant 117:392–402. doi:10.1034/j.1399-3054.2003.00046.x
  • Gebauer RLE, Strain BR, Reynolds JP (1998) The effect of elevated CO₂ and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine (Pinus taeda). Oecologia 113:29–36. doi:10.1007/s004420050350
  • Grace SC (2005) Phenolics as antioxidants. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 141–168
  • Grams TEE, Anegg S, Haberle KH, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO₂ and O₃ levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107. doi:10.1046/j.1469-8137.1999.00486.x
  • He XY, Huang W, Chen W, Dong T, Liu CB, Chen ZJ, Xu S, Ruan YN (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci (China) 21:199–203. doi:10.1016/S1001-0742(08)62251-2
  • Heagle AS, Body DE, Heck WW (1973) An open-top field chamber to assess the impact of air pollution on plants. J Environ Qual 2:365–368
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90523-7
  • Huang JG, Bergeron Y, Denneler B, Berninger F, Tardif J (2007) Response of forest trees to increased atmospheric CO₂. Crit Rev Plant Sci 26:265–283. doi:10.1080/07352680701626978
  • IPCC (2007) Climate change 2007: the scientific basis. Cambridge University Press, Cambridge
  • Iriti M, Faoro F (2008) Oxidative stress, the paradigm of ozone toxicity in plants and animals. Water Air Soil Pollut 187:285–301. doi:10.1007/s11270-007-9517-7
  • Isebrands JG, McDonald EP, Kruger E, Hendrey G, Percy K, Pregitzer K, Sober J, Karnosky DF (2001) Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environ Pollut 115:359–371. doi:10.1016/S0269-7491(01)00227-5
  • Karnosky DF (2003) Impacts of elevated atmospheric CO₂ on forest trees and forest ecosystems: knowledge gaps. Environ Int 29:161–169. doi:10.1016/S0160-4120(02)00159-9
  • Karnosky DF, Podila GK, Gagnon Z, Pechter P, Akkapeddi A, Sheng Y, Riemenschneider DE, Coleman MD, Dickson RE, Isebrands JG (1998) Genetic control of responses to interacting tropospheric ozone and CO₂ in Populus tremuloides. Chemosphere 36:807–812. doi:10.1016/S0045-6535(97)10128-X
  • Karnosky DF, Skelly JM, Percy KE, Chappelka AH (2007) Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ Pollut 147:489–506. doi:10.1016/j.envpol.2006.08.043
  • Kellomaki S, Wang KY (1997) Effects of elevated O₃ and CO₂ concentrations on photosynthesis and stomatal conductance in Scots pine. Plant Cell Environ 20:995–1006. doi:10.1111/j.1365-3040.1997.tb00676.x
  • Knorzer OC, Durner J, Boger P (1996) Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant 97:388–396. doi: 10.1111/j.1399-3054.1996.tb08872.x
  • Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998) Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118:1243–1252
  • Krivosheeva A, Tao DL, Ottander C, Wingsle G, Dube SL, Oquist G (1996) Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200:296–305. doi:10.1007/BF00200296
  • Kull O, Sober A, Coleman MD, Dickson RE, Isebrands JG, Gagnon Z, Karnosky DF (1996) Photosynthetic responses of aspen clones to simultaneous exposures of ozone and CO₂. Can J Forest Res 26:639–648
  • Kurz C, Schmieden U, Strobel P, Wild A (1998) The combined effect of CO₂, ozone, and drought on the radical scavenging system of young oak trees (Quercus petraea): a phytothron study. Chemosphere 36:783–788. doi:10.1016/S0045-6535(97)10124-2#
  • Kytoviita MM, Pelloux J, Fontaine V, Botton B, Dizengremel P (1999) Elevated CO₂ does not ameliorate effects of ozone on carbon allocation in Pinus halepensis and Betula pendula in symbiosis with Paxillus involutus. Physiol Plant 106:370–377. doi:10.1034/j.1399-3054.1999.106403.x
  • Leitao L, Maoret JJ, Biolley JP (2007) Changes in PEP carboxylase, rubisco and rubisco activase mRNA levels from maize (Zea mays) exposed to a chronic ozone stress. Biol Res 40:137–153
  • Leitao L, Dizengremel P, Biolley JP (2008) Foliar CO₂ fixation in bean (Phaseolus vulgaris L.) submitted to elevated ozone: distinct changes in Rubisco and PEPc activities in relation to pigment content. Ecotoxicol Environ Saf 69:531–540. doi: 10.1016/j.ecoenv.2006.10.010
  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592
  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628. doi:10.1146/annurev.arplant.55.031903.141610
  • Lutz C, Anegg S, Gerant D, Alaoui-Sosse B, Gerard J, Dizengremel P (2000) Beech trees exposed to high CO₂ and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiol Plant 109:252–259. doi:10.1034/j.1399-3054.2000.100305.x
  • Matsumura H (2001) Impacts of ambient ozone and/or acid mist on the growth of 14 tree species: an open top chamber study conducted in Japan. Water Air Soil Pollut 130:959–964. doi: 10.1023/A:1013919221030
  • McKee IF, Eiblmeier M, Polle A (1997) Enhanced ozone-tolerance in wheat grown at an elevated CO₂ concentration: ozone exclusion and detoxification. New Phytol 137:275–284. doi:10.1111/j.1469-8137.1997.tb01220.x
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Montillet JL, Cacas JL, Garnier L, Montane MH, Douki T, Bessoule JJ, Polkowska-Kowalczyk L, Maciejewska U, Agnel JP, Vial A, Triantaphylides C (2004) The upstream oxylipin profile of Arabidopsis thaliana: a tool to scan for oxidative stresses. Plant J 40:439–451. doi:10.1111/j.1365-313X.2004.02223.x
  • Nali C, Paoletti E, Marabottini R, Della Rocca G, Lorenzini G, Paolacci AR, Ciaffi M, Badiani M (2004) Ecophysiological and biochemical, strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmos Environ 38:2247–2257. doi: 10.1016/j.atmosenv.2003.11.043
  • Niewiadomska E, Gaucher-Veilleux C, Chevrier N, Mauffette Y, Dizengremel P (1999) Elevated CO₂ does not provide protection against ozone considering the activity of several antioxidant enzymes in the leaves of sugar maple. J Plant Physiol 155:70–77
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249
  • Paoletti E, Seufert G, Della Rocca G, Thomsen H (2007) Photosynthetic responses to elevated CO₂ and O₃ in Quercus ilex leaves at a natural CO₂ spring. Environ Pollut 147:516–524. doi: 10.1016/j.envpol.2006.08.039
  • Pell EJ, Eckardt N, Enyedi AJ (1992) Timing of ozone stress and resulting status of ribulose bisphosphatase carboxylase/oxygenase and associated net photosynthesis. New Phytol 120:397–405. doi:10.1111/j.1469-8137.1992.tb01080.x
  • Peltonen PA, Vapaavuori E, Julkunen-tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol 11:1305–1324. doi:10.1111/j.1365-2486.2005.00979.x
  • Polle A, Pfirrmann T, Chakrabarti S, Rennenberg H (1993) The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L). Plant Cell Environ 16:311–316. doi:10.1111/j.1365-3040.1993.tb00874.x
  • Ranieri A, Durso G, Nali C, Lorenzini G, Soldatini GF (1996) Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiol Plant 97:381–387. doi:10.1111/j.1399-3054.1996.tb08871.x
  • Ranieri A, Castagna A, Soldatini GF (2000) Differential stimulation of ascorbate peroxidase isoforms by ozone exposure in sunflower plants. J Plant Physiol 156:266–271
  • Rao MV, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol 109:421–432
  • Ryerson TB, Trainer M, Holloway JS, Parrish DD, Huey LG, Sueper DT, Frost GJ, Donnelly SG, Schauffler S, Atlas EL, Kuster WC, Goldan PD, Hubler G, Meagher JF, Fehsenfeld FC (2001) Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 292:719–723. doi:10.1126/science.1058113
  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928. doi:10.1007/s00425-002-0944-9
  • Schwanz P, Polle A (1998) Antioxidative systems, pigment and protein contents in leaves of adult Mediterranean oak species (Quercus pubescens and Q-ilex) with lifetime exposure to elevated CO₂. New Phytol 140:411–423. doi:10.1111/j.1469-8137.1998.00290.x
  • Sehmer L, Fontaine V, Antoni F, Dizengremel P (1998) Effects of ozone and elevated atmospheric carbon dioxide on carbohydrate metabolism of spruce needles. Catabolic and detoxification pathways. Physiol Plant 102:605–611. doi:10.1034/j.1399-3054.1998.1020416.x
  • Sgherri CLM, Salvateci P, Menconi M, Raschi A, Navari-Izzo F (2000) Interaction between drought and elevated CO₂ in the response of alfalfa plants to oxidative stress. J Plant Physiol 156:360–366
  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178. doi:10.1016/S0076-6879(99)99017-1
  • Tausz M, Olszyk DM, Monschein S, Tingey DT (2004) Combined effects of CO₂ and O₃ on antioxidative and photoprotective defense systems in needles of ponderosa pine. Biol Plant 48:543–548. doi:10.1023/B:BIOP.0000047150.82053.e9
  • Tausz M, Grulke NE, Wieser G (2007) Defense and avoidance of ozone under global change. Environ Pollut 147:525–531. doi: 10.1016/j.envpol.2006.08.042
  • Utriainen J, Janhunen S, Helmisaari HS, Holopainen T (2000) Biomass allocation, needle structural characteristics and nutrient composition in Scots pine seedlings exposed to elevated CO₂ and O₃ concentrations. Trees Struct Funct 14:475–484. doi: 10.1007/s004680000062
  • Volin JC, Reich PB (1996) Interaction of elevated CO₂ and O₃ on growth, photosynthesis and respiration of three perennial species grown in low and high nitrogen. Physiol Plant 97:674–684. doi: 10.1111/j.1399-3054.1996.tb00531.x
  • Volin JC, Reich PB, Givnish TJ (1998) Elevated carbon dioxide ameliorates the effects of ozone on photosynthesis and growth: species respond similarly regardless of photosynthetic pathway or plant functional group. New Phytol 138:315–325. doi: 10.1111/j.1469-8137.1998.00100.x
  • Vurro E, Bruni R, Bianchi A, di Toppi LS (2009) Elevated atmospheric CO₂ decreases oxidative stress and increases essential oil yield in leaves of Thymus vulgaris grown in a mini-FACE system. Environ Exp Bot 65:99–106. doi:10.1016/j.envexpbot.2008.09.001
  • Wang LL, He XY, Chen W (2009) Effects of elevated ozone on photosynthetic CO₂ exchange and chlorophyll a fluorescence in leaves of Quercus mongolica grown in urban area. Bull Environ Contam Toxicol 82:478–481. doi:10.1007/s00128-008-9606-3
  • Watanabe Y, Tobita H, Kitao M, Maruyama Y, Choi D, Sasa K, Funada R, Koike T (2008) Effects of elevated CO₂ and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. Trees Struct Funct 22:403–411. doi:10.1007/s00468-007-0201-8
  • Wittmann C, Matyssek R, Pfanz H, Humar M (2007) Effects of ozone impact on the gas exchange and chlorophyll fluorescence of juvenile birch stems (Betula pendula Roth.). Environ Pollut 150:258–266. doi:10.1016/j.envpol.2007.01.013
  • Wook KJ, Kim JH (1997) Modelling the net photosynthetic rate of Quercus mongolica stands affected by ambient ozone. Ecol Model 97:167–177. doi:10.1016/S0304-3800(96)01901-1
  • Wustman BA, Oksanen E, Karnosky DF, Noormets A, Isebrands JG, Pregitzer KS, Hendrey GR, Sober J, Podila GK (2001) Effects of elevated CO₂ and O₃ on aspen clones varying in O₃ sensitivity: can CO₂ ameliorate the harmful effects of O₃? Environ Pollut 115:473–481. doi:10.1016/S0269-7491(01)00236-6
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-aa9ddc9e-ce95-468c-a64e-7df35e5f061e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.