Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 07 |
Tytuł artykułu

Involvement of cytokinin response regulator RhRR1 in the control of flowering

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flowering at a suitable time is critical for ensuring reproductive success in the plant life cycle. The transition from vegetative growth to reproduction development is finely tuned by environmental and endogenous signals. To date, control of flowering involves five genetically defined pathways. However, the role of type-A response regulator genes in regulation of this process remains largely unclear. In the present study, we cloned and characterized a type-A response regulator gene (RhRR1) in rose. The expression of RhRR1 significantly increased in axillary bud during the transition from the vegetative growth to the start of floral differentiation, and in rose flowers in response to exogenous cytokinin or 1-methylcyclopropene (1-MCP) treatments, while that expression was markedly repressed by ethylene treatment. RhRR1 has the highest degree of sequence homology to AtARR8 and AtARR9, and is localized in the nucleus. Ectopic expression RhRR1 in Arabidopsis promoted early flowering, accompanied with the less rosette leaf number at bolting, and shorter bolting time after transferring the plants into pots. In addition, the expression of flowering regulatory genes in RhRR1 transgenic Arabidopsis, including FLOWERING LOCUS D, GA REQUIRING 1, LUMINIDEPENDENS, LEAFY, and TWIN SISTER OF FT clearly increased. These results allow us to infer that RhRR1 plays a key role in the control of flowering.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
41
Numer
07
Opis fizyczny
Article 121 [9p.], fig.,ref.
Twórcy
autor
  • Chongqing College Garden and Flower Engineering Research Center, Chongqing Engineering Research Center for Special Plant Seedlings, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402168, China
autor
  • Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
autor
  • Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China
autor
  • Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing 402160, China
autor
  • Chongqing College Garden and Flower Engineering Research Center, Chongqing Engineering Research Center for Special Plant Seedlings, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402168, China
autor
  • Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing 402160, China
Bibliografia
  • Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172. https://doi.org/10.1104/pp.106.092254
  • Batoko H, Zheng HQ, Hawes C, Moore I (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and Golgi apparatus and for normal Golgi movement in plants. Plant Cell 12:2201–2217. https://doi.org/10.1105/tpc.12.11.2201
  • Brandstatter I, Kieber JJ (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10:1009–1019. https://doi.org/10.1105/tpc.10.6.1009
  • Burg SP, Burg EA (1966) Auxin-induced ethylene formation: its relation to flowering in the pineapple. Science 152:1269. https://doi.org/10.1126/science.152.3726.1269
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  • D’Aloia M, Bonhomme D, Bouche F, Tamseddak K, Ormenese S, Torti S, Coupland G, Perilleux C (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979. https://doi.org/10.1111/j.1365-313X.2011.04482.x
  • Debener T, Linde M (2009) Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci 28:267–280. https://doi.org/10.1080/07352680903035481
  • Foucher F, Chevalier M, Corre C, Soufflet-Freslon V, Legeai F, Hibrand-Saint Oyant L (2008) New resources for studying the rose flowering process. Genome 51:827–837. https://doi.org/10.1139/G08-067
  • Gao B, Fan L, Li X, Yang H, Liu F, Wang L, Xi L, Ma N, Zhao L (2013) RcRR1, a Rosa canina type-A response regulator gene, is involved in cytokinin-modulated rhizoid organogenesis. PLoS One 8:e72914. https://doi.org/10.1371/journal.pone.0072914
  • Gendall AR, Levy YY, Wilson A, Dean C (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525–535. https://doi.org/10.1016/S0092-8674(01)00573-6
  • Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48:523–539. https://doi.org/10.1093/pcp/pcm022
  • Horridge JS, Cockshull KE (1974) Flower initiation and development in the glasshouse rose. Sci Hortic 2:273–284. https://doi.org/10.1016/0304-4238(74)90036-3
  • Hutchison CE, Kieber JJ (2002) Cytokinin signaling in Arabidopsis. Plant Cell 14(suppl 1):s47–s59. https://doi.org/10.1105/tpc.010444
  • Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Oyant LH, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125. https://doi.org/10.1111/j.1365-313X.2011.04776.x
  • Johansson M, Staiger D (2015) Time to flower: interplay between photoperiod and the circadian clock. J Exp Bot 66:719–730. https://doi.org/10.1093/jxb/eru441
  • Johnson DS (1924) The influence of insolation on the distribution and on the developmental sequence of the flowers of the giant cactus of Arizona. Ecology 5:70–82. https://doi.org/10.2307/1929166
  • Kawamura K, Hibrand-Saint Oyant L, Crespel L, Thouroude T, Lalanne D, Foucher F (2011) Quantitative trait loci for flowering time and inflorescence architecture in rose. Theor Appl Genet 122:661–675. https://doi.org/10.1007/s00122-010-1476-5
  • Koornneef M, Hanhart CJ, Van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66. https://doi.org/10.1007/BF00264213
  • Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol Gen Genet 277:115–137. https://doi.org/10.1007/s00438-006-0177-x
  • Li Y, Kurepa J, Smalle J (2013) AXR1 promotes the Arabidopsis cytokinin response by facilitating ARR5 proteolysis. Plant J 74:13–24. https://doi.org/10.1111/tpj.12098
  • Lü P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan MA, Wang L, Hong B, Gao J (2014) RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. Plant J 78:578–590. https://doi.org/10.1111/tpj.12494
  • Luo J, Ma N, Pei H, Chen J, Li J, Gao J (2013) A DELLA gene, RhGAI1, is a direct target of EIN3 and mediates ethylene-regulated rose petal cell expansion via repressing the expression of RhCesA2. J Exp Bot 64:5075–5084. https://doi.org/10.1093/jxb/ert296
  • Ma N, Cai L, Lu W, Tan H, Gao J (2005) Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Sci China Ser C Life Sci 48:434. https://doi.org/10.1360/062004-37
  • Meng Y, Ma N, Zhang Q, You Q, Li N, Ali Khan M, Liu X, Wu L, Su Z, Gao J (2014) Precise spatio-temporal modulation of ACC synthase by MPK6 cascade mediates the response of rose flowers to rehydration. Plant J 79:941–950. https://doi.org/10.1111/tpj.12594
  • Moe R, Kristoffersen T (1968) The effect of temperature and light on growth and flowering of Rosa ‘Baccara’ in greenhouses. Acta Hortic 14:157–166. https://doi.org/10.17660/actahortic.1969.14.16
  • Müller B, Sheen J (2007) Advances in cytokinin signaling. Science 318:68–69. https://doi.org/10.1126/science.1145461
  • Osakabe Y, Miyata S, Urao T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2002) Overexpression of Arabidopsis response regulators, ARR4/ATRR1/IBC7 and ARR8/ATRR3, alters cytokinin responses differentially in the shoot and in callus formation. Biochem Bioph Res Co 293:806–815. https://doi.org/10.1016/S0006-291X(02)00286-3
  • Pei H, Ma N, Tian J, Luo J, Chen J, Li J, Zheng Y, Chen X, Fei Z, Gao J (2013) An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol 163:775–791. https://doi.org/10.1104/pp.113.223388
  • Rashotte AM (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 132:1998–2011. https://doi.org/10.1104/pp.103.021436
  • Salome PA, To JP, Kieber JJ, McClung CR (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18:55–69. https://doi.org/10.1105/tpc.105.037994
  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595. https://doi.org/10.1105/tpc.112.098640
  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037. https://doi.org/10.1007/s00018-011-0673-y
  • Uraoa T, Yamaguchi-Shinozakia K, Shinozakib K (2000) Two-component systems in plant signal transduction. Trends Plant Sci 5:67–74. https://doi.org/10.1016/S1360-1385(99)01542-3
  • Wang GY, Yuan MF, Hong Y (2002) In vitro flower induction in roses. Vitro Cell Dev Biol Plant 38:513–518. https://doi.org/10.1079/IVP2002340
  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749. https://doi.org/10.1016/j.cell.2009.06.014
  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056. https://doi.org/10.1126/science.1115983
  • Wu L, Ma N, Jia Y, Zhang Y, Feng M, Jiang CZ, Ma C, Gao J (2017) An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiol 173:853–862. https://doi.org/10.1104/pp.16.01064
  • Zeng S, Liang S, Zhang YY, Wu KL, Teixeira da Silva JA, Duan J (2013) In vitro flowering red miniature rose. Biol Plant 57:401–409. https://doi.org/10.1007/s10535-013-0306-4
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-a9270365-3e54-4b97-b875-296145d25f65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.