Warianty tytułu
Języki publikacji
Abstrakty
The main aim of our research was to determine the response of Silene vulgaris ecotypes, occurring in different habitats, to increased nickel concentration. We used S. vulgaris seeds originating from Zn-Pb ore areas of Upper Silesia (the area adjacent to the “Szopienice” ironworks in Katowice), a serpentine dump in Wiry, as well as seeds of natural ecotype collected from an area not contaminated with heavy metals (Gajków near Wrocław). Laboratory experiments covered comparative analysis of select S. vulgaris ecotypes. In the course of pot experiments, it was possible to state that S. vulgaris ecotypes differ in morphological features (plant height, leaf shape). The other aim of research was determination response of select ecotypes to the presence of nickel in the substrate. Is Silene vulgaris originating from a serpentine dump characterized by a higher tolerance to elevated nickel content in a growth medium in comparison to other ecotypes. Studies with nickel (0, 30, 60, 90 mg·kg⁻¹) have shown that, according to the increase in nickel dose, there was an increase in its concentration in above-ground parts of Silene vulgaris ecotypes. Plants from serpentine dump accumulated considerably higher amounts of Ni than the remaining ecotypes. However, applied nickel did not influence magnesium content in above-ground parts of the examined Silene vulgaris. According to the increase in Ni dose, a decrease of Fe in Silene vulgaris shoots was observed and that phenomenon was most evident in plants of serpentine ecotype.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.1741-1747,fig.,ref.
Twórcy
autor
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wroclaw, Poland
autor
- Department of Plant Nutrition, Wroclaw University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wroclaw, Poland
Bibliografia
- 1. KRAWCZYK A., KRAWCZYK J. Ecotopical differentiation of Homogyne alpina (L.) Cass.in the Karkonosze Montains. Opera Corconitica 37, 244, 2000 [In Polish].
- 2. STACE C.A. Plant taxonomy and biosystematics. PWN, Warszawa, pp. 340, 1993 [In Polish].
- 3. MOWSZOWICZ J. National field and garden weeds. PWRL, Warszawa, pp. 687, 1986 [In Polish].
- 4. MATUSZKIEWICZ W. Guide for identification of the plant communities of Poland. PWN, Warszawa, pp. 537, 2008 [In Polish].
- 5. WIERZBICKA M., PANUFNIK D. The adaptation of Silene vulgaris to the growth on a calamine waste heap (S. Poland). Environ. Pollut. 101, 415, 1998.
- 6. KOSZELNIK-LESZEK A. Structure of leaf blade and content of nickel, chromium and zinc in Silene vulgaris (Moench) Garcke and soil on the serpentine spoil mount at Wirki. Advances of Agricultural Sciences Problem Issues, 520, 227, 2007 [In Polish].
- 7. NADGÓRSKA-SOCHA A., CIEPAŁ R. Phytoextraction of zinc, lead and cadmium with Silene vulgaris (Moench) Gracke in the post industrial area. Ecol. Chem. Eng. 16, 831, 2009.
- 8. BRATTELER M., WIDMER A., BALTISBERGER M., EDWARDS P.J. Genetic architecture of assiociated with habitat adaptation in Silene vulgaris (Caryophyllaceae) Bulletin of the Geobotanical Institute ETH 68, 95, 2002.
- 9. KANDZIORA M., HEFLIK M., NADGÓRSKA- SOCHA A., CIEPAŁ R. The synthesis of the compounds rich in –SH groups as an answer to the increased heavy metals concentration in Silene vulgaris (Caryophyllaceae). Environmental Protection and Natural Resources 33, 69, 2007 [In Polish].
- 10. NADGÓRSKA-SOCHA A., KANDZIORA-CIUPA M., CIEPAŁ R, WALASEK K. Effects of Zn, Cd, Pb on physiological response of Silene vulgaris plants from selected populations. Pol. J. Environ. Stud. 20, (3), 599, 2011.
- 11. HARMENS H., DEN HARTOG P. R., WILMA M., BOOKUM T., VERKLEIJ J.A.C. Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol. 103, 1305, 1993.
- 12. VERKLEJI J. A. C., PRAST J. E. Cadmium tolerance and co-tolerance in Silene vulgaris (Moench) Gracke. New. Phytol. 111, 637, 1989.
- 13. PALIOURIS G., HUTCHINSON T.C. Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Gracke from Ontario, Canada. New. Phytol. 117, 449, 1991.
- 14. GABBRIELLI R., PANDOLFINI T., VERGNANO O., PALANDRII M. R. Comparison of serpentine species with different nickel tolerance strategies. Plant Soil 122, 271, 1990.
- 15. WESTERBERGH A. Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant Soil 167, 297, 1994.
- 16. BOTHE H. Plants in heavy metal soils. In: Sherameti I., Varma A (Eds.), Detoxification of Heavy Metals, Soil Biology 30, Springer-Verlag, Berlin, 2011.
- 17. KUČERA T., HORÁKOVÁ H., ŠONSKÁ A. Toxic metal ions in photoautotrophic organisms. Photosynthetica 46, 481, 2008.
- 18. OLKO A. Physiological aspect of plant heavy metal tolerance. Kosmos 58, 282, 2009 [In Polish].
- 19. SIWEK M. Plants in postindustrial site, contaminated with heavy metals. Part II. Mechanisms of detoxification and strategies of plant adapted to heavy metals. Wiad. Bot. 52, 7, 2008 [In Polish].
- 20. KAZAKOU E., DIMITRAKOPOULOS P. G., BAKER A. J. M., REEVES R. D., TROUMBIS A. Y. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol. Rev. 83, 495, 2008.
- 21. WEBER J. Genesis and properties of soils derived from serpentines in Lower Silesia. Part III. Physical-chemical properties. Soil Sci. Annu. 32, 145, 1981 [In Polish].
- 22. SAROSIEK J., SADOWSKA A. Ecology serpentine plants soil. Wiad. Bot. 5, 73, 1961 [In Polish].
- 23. ŻOŁNIERZ L. Nickel in plants growing on serpentine soils of Lower Silesia. Chromium, nickel and aluminum in the environment ecological and analytical problem. Ossolineum Wrocław, Warszawa, Kraków, Zesz. Nauk. 5, 159, 1993 [In Polish].
- 24. ŻOŁNIERZ L. Grassland on serpentines in Lower Silesia (SW Poland) some aspects of their Ecology. Scientific Papers University of Life Sciences in Wrocław, Agriculture, 555, 2007 [In Polish].
- 25. BOYD R.S. MARTENS S. N. [in:] The vegetation of ultramafic (serpentine) soils: Proc. 1st Int. Conf. on Serpentine Ecology, Univ. of California, (Ed.) Davis. Intercept Ltd, Andover, UK, 291-304. 1992.
- 26. KAZAKOU E., ADAMIDIS G.C., BAKER A. J. M., REEVES R. D., GODINO M., DIMITRAKOPULOS P.G. Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance. Plant Soil, 332, 369, 2010.
- 27. FREITAS H., PRASAD M.N.V., PRATAS J. Analysis of serpentinophytes from north-west Portugal for trace metal accumulation – relevance to the management of mine environment, Chemosphere, 54, 1625, 2004.
- 28. BRADY K. U., KRUCKEBERG A. R., BRADSHAW Jr. H. D. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst., 36, 243, 2005.
- 29. KOSZELNIK-LESZEK A.,WALL Ł. The estimation of selected heavy metals and macroelements content in Dianthus carthusianorum l., in serpentine damp and natural habitat. Advances of Agricultural Sciences Problem Issues 541, 245, 2009.
- 30. HOAGLAND D.R., ARNON D.I. The water culture method for growing plants without soil. Calif. Agric. Exp. Stn Bull. Circular 347, 1, 1950.
- 31. KIM J.Y., PARK C., W. Morphological and chromosomal variation in Fallopia section Reynoutria (Polygonaceae) in Korea. Brittonia 52, 34, 2000.
- 32. SULEJ J., ŚLESAK E., LEONOWICZ-BABIAK K., BUCZEK J. Tentative explanation of dwarfish growth of plants on serpentine soils. Physico-chemical and biological properties, and mineral element of serpentine soils. Acta Soc. Bot. Pol. 39, 405, 1970 [In Polish].
- 33. WIERZBICKA M. The adaptation of plants to growth on calamine waste heap in Bolesław near Olkusz. Kosmos, 51, 139, 2002.
- 34. WIĄCKOWSKI S. General Ecology. BRANTA, Bydgoszcz, pp. 435, 2008 [In Polish].
- 35. ŻOŁNIERZ L. The role of heavy metals in plants and habitats distinct serpentine Lower Silesia. Dissertation manuscript Agricultural University in Wrocław, 1989 [In Polish].
- 36. PROCTOR J. NAGY L. Ultramafic rocks and their vegetation: an overview In: Baker A. J. M. (Ed): The vegetation of ultramafic (serpentine) soil. Proceedings of the First International Conference on Serpentine Ecology. Intercept Ltd. Andover, Hampshire, 469, 1993.
- 37. DZIDA K., JAROSZ Z. Effect of different levels of nitrogen fertilization and additional foliage feeding on the yield and some elements in leaves and fruits of tomato Annales Univ. M. Curie-Skłodowska, Lublin-Polonia, 15, 51, 2005.
- 38. PROCTOR J., MC.GOWAN I. D. Influence of magnesium on nickel toxicity. Nature 260, 134, 1976.
- 39. YUSUF M., FARIDUDDIN Q., HAYAT S., AHMAD A. Nickel: An overview of uptake, essentiality and toxicity in plants. B. Environ. Contam. Tox. 86, 1, 2011.
- 40. CHEN C., HUANG D., LIU J. Functions and toxicity of nickel in plants: Recent advances and future prospects. CLEAN-Soil, Air, Water 37, 304, 2009.
- 41. KOSZELNIK-LESZEK A., SPIAK Z. The sensitivity of some spring wheat cultivars to increased nickel contents in soil. Advances of Agricultural Sciences Problem Issues 502, 853, 2004 [In Polish].
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-a8d40db1-37ae-4479-a340-f776ec4c9e5a