Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 2 |
Tytuł artykułu

Synthetic insecticides-is there an alternative?

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Synthetic insecticides are very efficient in insect control but can be harmful for the environment and health. They cause disturbances in ecosystem functioning, are toxic for a wide range of non-target organisms, and have a high tendency to accumulate in the environment. Because of this, some alternatives are being sought. A good solution seems to use biologically active peptides like peptide hormones, neurohormones, or neuromodulators to regulate major processes in insects: development, growth, reproduction, and metabolism. Peptides, such as trypsin modulating oostatic factor (TMOF), pheromone biosynthesis activating neuropeptides (PBANs), pyrokinins (PKs), sulfakinins (SKs), and allostatins (ASTs), as well as their analogues, have been extensively studied to produce pseudopeptides and peptidomimetics used by modern agriculture in contrast to chemical insecticides.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
23
Numer
2
Opis fizyczny
p.291-302,ref.
Twórcy
autor
  • Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
Bibliografia
  • 1. TILMAN D., CASSMAN K. G., MATSON P. A., NAYLOR R., POLASKY S. Agricultural sustainability and intensive production practices. Nature. 418, (6898), 671, 2002.
  • 2. BASIOUNY A. L., HAMADAH K. S., TANANI M. A. Efficacy of the wild plant Fagonia bruguieri (Zygophyllaceae) on acid and alkaline phosphatase activities in the desert locust Schistocerca gregaria (Orthoptera: Acrididae). Egyptian Academic Journal of Biological Sciences. 2, (2), 1, 2010.
  • 3. VAN DER GAAG N. Pick your poison. New Internationalist. 58, (323), 9, 2000.
  • 4. TIRYAKI D., TEMUR C. The fate of pesticide in the environment. J. Biol. Environ. Sci. 4, (10), 29, 2010.
  • 5. DAMALAS C. A., ELEFTHEROHORINOS I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public. Health. 8, (5), 1402, 2011.
  • 6. ISHAAYA I. Biochemical processes related to insecticide action: An overview. In: ISHAAYA I., Ed. Biochemical processes related to insecticide action. Heidelberg: Springer-Verlag Berlin, pp. 1-16, 2001.
  • 7. MEGALLY N. Y., EMAM E. S., SWELAM E. S. Furocoumarin and quinolone alkaloid with larvicidal and antifeedant activities isolated from Rutacha lepensis leaves. J. Nat. Prod. 2, 10, 2009.
  • 8. HIRAYAMA C., KONNO K., WASANO N., NAKAMURA M. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of eri and domesticated silkworms: Enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochem. Mol. Biol. 37, (12), 1348, 2007.
  • 9. GADE G., GOLDSWORTHY G. J. Insect peptide hormones: A selective review of their physiology and potential application for pest control. Pest. Manag. Sci. 59, (10), 1063, 2003.
  • 10. LENORMAND T., BOURGUET D., GUILLEMAUD T., RAYMOND M. Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature. 400, (6747), 861, 1999.
  • 11. HAMMERSTROM R. J. Insect resistance to insecticides. Public Health Rep. 73, (12), 1126, 1958.
  • 12. YU S. J. Biochemical characteristics of microsomal and cytosolic glutathione s-transferases in larvae of the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pestic. Biochem. Physiol. 72, (2), 100, 2002.
  • 13. SILVA A. X., JANDER G., SAMANIEGO H., RAMSEY J. S., FIGUEROA C. C. Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae): A transcriptomic survey. PLoS One. 7, (6), e36366, 2012.
  • 14. SPRINGATE S., COLVIN J. Pyrethroid insecticide resistance in british populations of the cabbage whitefly, Aleyrodes proletella. Pest. Manag. Sci. 68, (2), 260, 2012.
  • 15. PARIS M., DESPRES L. Identifying insecticide resistance genes in mosquito by combining AFLP genome scans and 454 pyrosequencing. Mol. Ecol. 21, (7), 1672, 2012.
  • 16. SHAD S. A., SAYYED A. H., FAZAL S., SALEEM M. A., ZAKA S. M., ALI M. Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). J. Pest Sci. 85, (1), 153, 2012.
  • 17. MCKENZIE J. A. Ecological and evolutionary aspects of insecticide resistance. Genet. Res. Camb. 68, 183, 1996.
  • 18. GAO Y., LEI Z., REITZ S. R. Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies. Pest Manag. Sci. 68, (8), 1111, 2012.
  • 19. HULSHOF J., KETOJA E., VANNINEN I. Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Entomol. Exp. Appl. 108, (1), 19, 2003.
  • 20. REITZ S. R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Fla. Entomol. 92, (1), 7, 2009.
  • 21. PERERA M. D., HEMINGWAY J., KARUNARATNE S. P. Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malar. J. 7, 168, 2008.
  • 22. HEMINGWAY J., HAWKES N. J., MCCARROLL L., RANSON H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, (7), 653, 2004.
  • 23. NAUEN R., DENHOLM I. Resistance of insect pests to neonicotinoid insecticides: Current status and future prospects. Arch. Insect Biochem. Physiol. 58, (4), 200, 2005.
  • 24. ALYOKHIN A., SEWELL G., CHOBAN R. Reduced viability of colorado potato beetle, Leptinotarsa decemlineata, eggs exposed to novaluron. Pest Manag. Sci. 64, (1), 94, 2008.
  • 25. DURAND R., BOUVRESSE S., BERDJANE Z., IZRI A., CHOSIDOW O., CLARK J. M. Insecticide resistance in head lice: Clinical, parasitological and genetic aspects. Clin. Microbiol. Infect. 18, (4), 338, 2012.
  • 26. BOYER S., ZHANG H., LEMPERIERE G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, (2), 213, 2012.
  • 27. FFRENCH-CONSTANT R. H., DABORN P. J., LE GOFF G. The genetics and genomics of insecticide resistance. Trends Genet. 20, (3), 163, 2004.
  • 28. WANG C., CHIN-SANG I., BENDENA W. G. The FGLamide-allatostatins influence foraging behavior in Drosophila melanogaster. PLoS One. 7, (4), e36059, 2012.
  • 29. PATON M. G., KARUNARATNE S. H., GIAKOUMAKI E., ROBERTS N., HEMINGWAY J. Quantitative analysis of gene amplification in insecticide-resistant Culex mosquitoes. Biochem. J. 346, (Pt 1), 17, 2000.
  • 30. FRAGOSO D. B., GUEDES R. N. C., OLIVEIRA M. G. A. Partial characterization of glutathione s-transferases in pyrethroid-resistant and -susceptible populations of the maize weevil, Sitophilus zeamais. J. Stored Prod. Res. 43, (2), 167, 2007.
  • 31. ORTELLI F., ROSSITER L. C., VONTAS J., RANSON H., HEMINGWAY J. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem. J. 373, (Pt 3), 957, 2003.
  • 32. GRANT D. F., HAMMOCK B. D. Genetic and molecular evidence for a trans-acting regulatory locus controlling glutathione s-transferase-2 expression in Aedes aegypti. Mol. Gen. Genet. 234, (2), 169, 1992.
  • 33. WALSH S. B., DOLDEN T. A., MOORES G. D., KRISTENSEN M., LEWIS T., DEVONSHIRE A. L., WILLIAMSON M. S. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 359, (Pt 1), 175, 2001.
  • 34. TAO L. M., SHI M. G., YUANG J. Z., ZHUANG P. J., ZHANG C. X., TANG Z. H. Resistance pattern and point mutations of insensitive acetylcholine esterase in a carbamate-resistant strain of housefly (Musca domestica). Pestic. Biochem. Physiol. 86, (1), 1, 2006.
  • 35. LIU Z., VALLES S. M., DONG K. Novel point mutations in the german cockroach para sodium channel gene are associated with knockdown resistance (kdr) to pyrethroid insecticides. Insect Biochem. Mol. Biol. 30, (10), 991, 2000.
  • 36. SODERLUND D. M., KNIPPLE D. C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol. 33, (6), 563, 2003.
  • 37. ISHTIAQ M., SALEM M. A., RAZAQ M. Monitoring of resistance in Spodoptera exigua (Lepidoptera: Noctuidae) from four districts of the Southern Punjab, Pakistan to four conventional and six new chemistry insecticides. Crop Prot. 33, 13, 2012.
  • 38. ZHAO G., LIU W., BROWN J. M., KNOWLES C. O. Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 88, (5), 1164, 1995.
  • 39. ARNAUD L., HAUBRUGE E. Insecticide resistance enhances male reproductive success in a beetle. Evolution. 56, (12), 2435, 2002.
  • 40. PIMENTEL D. Environmental and economic costs of the application of pesticides primarily in The United States. Environment, Development and Sustainability. 7, 229, 2005.
  • 41. HARRISON J. Lessons learned from pesticide drift: A call to bring production agriculture, farm labor, and social justice back into agrifood research and activism. Agr. Hum. Values. 25, (2), 163-67, 2008.
  • 42. COLE D. C., CARPIO F., LEON N. Economic burden of illness from pesticide poisonings in highland Ecuador. Rev. Panam. Salud. Publica. 8, (3), 196, 2000.
  • 43. LEACH A. W., MUMFORD J. D. Pesticide environmental accounting: A method for assessing the external costs of individual pesticide applications. Environ. Pollut. 151, (1), 139, 2008.
  • 44. SOARES W. L., PORTO M. F. D. Estimating the social cost of pesticide use: An assessment from acute poisoning in Brazil. Ecol. Econ. 68, (10), 2721, 2009.
  • 45. LEACH A. W., MUMFORD J. D. Pesticide environmental accounting: A decision-making tool estimating external costs of pesticides. J. Verbrauch. Lebensm. 6, 21, 2011.
  • 46. KIM H. J., CHA E. S., KO Y., KIM J., KIM S. D., LEE W. J. Pesticide poisonings in South Korea: Findings from the national hospital discharge survey 2004-2006. Hum. Exp. Toxicol. 31, (8), 75, 2012.
  • 47. AARDEMA H., MEERTENS J. H., LIGTENBERG J. J., PETERS-POLMAN O. M., TULLEKEN J. E., ZIJLSTRA J. G. Organophosphorus pesticide poisoning: Cases and developments. Neth. J. Med. 66, (4), 149, 2008.
  • 48. EDDLESTON M., BATEMAN D. N. Pesticides. Medicine. 40, (3), 147, 2011.
  • 49. MARETTO G. X., DO NASCIMENTO C. P., PASSAMANI L. M., SCHENBERG L. C., DE ANDRADE T. U., FIGUEIREDO S. G., MAUAD H., SAMPAIO K.N. Acute exposure to the insecticide O,S-dimethyl phosphoramidothioate (methamidophos) leads to impairment of cardiovascular reflexes in rats. Ecotoxicol. Environ. Saf. 80, 203, 2012.
  • 50. RUMBEIHA W. K. Toxicology and "One health": Opportunities for multidisciplinary collaborations. J. Med. Toxicol. 8, (2), 91, 2012.
  • 51. EDDLESTON M., STREET J. M., SELF I., THOMPSON A., KING T., WILLIAMS N., NAREDO G., DISSANAYAKE K., YU L. M., WOREK F., JOHN H., SMITH S., THIERMANN H., HARRIS J. B., EDDIE CULTTON R. A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology. 294, (2-3), 94, 2012.
  • 52. KARALLIEDDE L. Organophosphorus poisoning and anaesthesia. Anaesthesia. 54, (11), 1073, 1999.
  • 53. KURTULUS A., DODURGA Y., YONGUC G. N., SORKUN H. C., BOZ B., ACAR K. Effect of short-term exposure to dichlorvos on rat hepatocyte: Molecular and histopathological approach. Romanian Journal of Legal Medicine. 20, (2), 155, 2012.
  • 54. WALISZEWSKI S. M., AGUIRRE A. A., INFANZON R. M., SILVA C. S., SILICEO J. Organochlorine pesticide levels in maternal adipose tissue, maternal blood serum, umbilical blood serum, and milk from inhabitants of Veracruz, Mexico. Arch. Environ. Con. Tox. 40, (3), 432, 2001.
  • 55. COLLES A., KOPPEN G., HANOT V., NELEN V., DEWOLF M. C., NOEL E., MALISCH R., KOTZ A., KYPKE K., BIOT P., VINKX C., SCHOETERS G. Fourth who-coordinated survey of human milk for persistent organic pollutants (pops): Belgian results. Chemosphere. 73, (6), 907, 2008.
  • 56. KOPPEN G., DEN HOND E., NELEN V., VAN DE MIEROOP E., BRUCKERS L., BILAU M., KEUNE H., LAREBEKE N., COVACI A., VAN DE WEGHE H., SCHROIJEN C., DESAGER K., STALPAERT M., BAEVENS W., SCHOETERS G. Organochlorine and heavy metals in newborns: Results from the flemish environment and health survey (flehs 2002-2006). Environ. Int. 35, (7), 1015, 2009.
  • 57. PORTA M., GASULL M., PUIGDOMENECH E., GARI M., BOSCH DE BASEA M., GUILLEN M., LOPEZ T., BIGAS E., PUMAREGA J., LLEBARIA X., GRIMALT J. O., TRESSERRAS R. Distribution of blood concentrations of persistent organic pollutants in a representative sample of the population of Catalonia. Environ. Int. 36, (7), 655, 2010.
  • 58. AL-SALEH I., AL-DOUSH I., ALSABBAHEEN A., MOHAMED GEL D., RABBAH A. Levels of DDT and its metabolites in placenta, maternal and cord blood and their potential influence on neonatal anthropometric measures. Sci. Total Environ. 416, 62, 2012.
  • 59. FREIRE C., LOPEZ-ESPINOSA M. J., FERNANDEZ M., MOLINA-MOLINA J. M., PRADA R., OLEA N. Prenatal exposure to organochlorine pesticides and TSH status in newborns from Southern Spain. Sci. Total Environ. 409, (18), 3281, 2011.
  • 60. WOJTOWICZ A. K., MILEWICZ T., GREGORASZCZUK E. L. Time-dependent action of DDT (1,1,1-trichloro-2,2-bis(p-hlorophenyl)ethane) and its metabolite DDE (1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene) on human chorionic gonadotropin and progesterone secretion. Gynecol. Endocrinol. 24, (1), 54, 2008.
  • 61. WOJTOWICZ A. K., MILEWICZ T., GREGORASZCZUK E. L. DDT and its metabolite DDE alter steroid hormone secretion in human term placental explants by regulation of aromatase activity. Toxicol. Lett. 173, (1), 24, 2007.
  • 62. CRINNION W. J. Chlorinated pesticides: Threats to health and importance of detection. Altern. Med. Rev. 14, (4), 347, 2009.
  • 63. PATHAK R., SUKE S. G., AHMED T., AHMED R. S., TRIPATHI A. K., GULERIA K., SHARMA C. S., MAKHIJANI S. D., BANERJEE B. D. Organochlorine pesticide residue levels and oxidative stress in preterm delivery cases. Hum. Exp. Toxicol. 29, (5), 351, 2010.
  • 64. FREIRE C., KOIFMAN S. Pesticide exposure and Parkinson's disease: Epidemiological evidence of association. Neurotoxicology. 33, (5), 947, 2012.
  • 65. KAMEL F., UMBACH D. M., BEDLACK R. S., RICHARDS M., WATSON M., ALAVANJA M. C., BLAIR A., HOPPIN J. A., SCHMIDT S., SANDLER D. P. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology. 33, (3), 457, 2012.
  • 66. METAYER C., BUFFLER P. A. Residential exposures to pesticides and childhood leukaemia. Radiat. Prot. Dosimetry. 132, (2), 212, 2008.
  • 67. BURGER J., DE MOL F., GEROWITT B. The "Necessary extent" of pesticide use – Thoughts about a key term in german pesticide policy. Crop Prot. 27, (3-5), 343, 2008.
  • 68. MARIYONO J. Direct and indirect impacts of integrated pest management on pesticide use: A case of rice agriculture in Java, Indonesia. Pest Manag. Sci. 64, (10), 1069, 2008.
  • 69. KERLE E. A., JENKINS J. J., VOGUE P. A. Understanding pesticide persistence and mobility for groundwater and surface water protection, Oregon State University: Corvallis, 1-7, 2007.
  • 70. CASTILLO L. E., MARTINEZ E., RUEPERT C., SAVAGE C., GILEK M., PINNOCK M., SOLIS E. Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, limon, Costa Rica. Sci. Total Environ. 367, (1), 418, 2006.
  • 71. HANAZATO T. Pesticide effects on freshwater zooplankton: An ecological perspective. Environ. Pollut. 112, (1), 1-10, 2001.
  • 72. LIESS M., SCHULZ R. Linking insecticide contamination and population response in an agricultural stream. Environ. Toxicol. Chem. 18, (9), 1948, 1999.
  • 73. DELORENZO M. E., SCOTT G. I., ROSS P. E. Toxicity of pesticides to aquatic microorganisms: A review. Environ. Toxicol. Chem. 20, (1), 84, 2001.
  • 74. SCOTT G. I., FULTON M. H., WIRTH E. F., CHANDLER G. T., KEY P. B., DAUGOMAH J. W., BEARDEN D., CHUNG K. W., STROYIER E. D., DELORENYO M., SIVERTSEN S., DIAS A., SANDERS M., MACAULEZ J. M., GOODMAN L. R., LACROIX M. W., THAZER G. W., KUCKLICK J. Toxicological studies in tropical ecosystems: An ecotoxicological risk assessment of pesticide runoff in South Florida estuarine ecosystems. J. Agric. Food Chem. 50, (15), 4400, 2002.
  • 75. DOWNING H. F., DELORENZO M. E., FULTON M. H., SCOTT G. I., MADDEN C. J., KUCKLICK J. R. Effects of the agricultural pesticides atrazine, chlorothalonil, and endosulfan on South Florida microbial assemblages. Ecotoxicology. 13, (3), 245, 2004.
  • 76. SZOCS E., KEFFORD B. J., SCHAFER R. B. Is there an interaction of the effects of salinity and pesticides on the community structure of macroinvertebrates? Sci. Total Environ. 437, 121, 2012.
  • 77. CHOUNG C. B., HYNE R. V., STEVENS M. M., HOSE G. C. The ecological effects of a herbicide-insecticide mixture on an experimental freshwater ecosystem. Environ. Pollut. 172, 264, 2013.
  • 78. MILLS N. E., SEMLITSCH R. D. Competition and predation mediate the indirect effects of an insecticide on southern leopard frogs. Ecol. Appl. 14, (4), 1041, 2004.
  • 79. AGRA A. R., SOARES A. M. Effects of two insecticides on survival, growth and emergence of Chironomus riparius Meigen. Bull. Environ. Contam. Toxicol. 82, (4), 501, 2009.
  • 80. PRESTON B. L., CECCHINE G., SNELL T. W. Effects of pentachlorophenol on predator avoidance behavior of the rotifer Brachionus calyciflorus. Aquat. Toxicol. 44, (3), 201, 1999.
  • 81. DEVINE G. J., FURLONG M. J. Insecticide use: Contexts and ecological consequences. Agr. Hum. Values. 24, (3), 281, 2007.
  • 82. SONNE C., ALSTRUP A. K., THERKILDSEN O. R. A review of the factors causing paralysis in wild birds: Implications for the paralytic syndrome observed in the Baltic Sea. Sci. Total Environ. 416, 32, 2012.
  • 83. NEWTON I. Population ecology of raptors. Berkhamsted: T. & A. D. Poyser, 1979.
  • 84. ALIOUANE Y., EL HASSANI A. K., GARY V., ARMENGAUD C., LAMBIN M., GAUTHIER M. Subchronic exposure of honeybees to sublethal doses of pesticides: Effects on behavior. Environ. Toxicol. Chem. 28, (1), 113, 2009.
  • 85. ALTSTEIN M. Novel insect control agents based on neuropeptide antagonists: The PK/PBAN family as a case study. J. Mol. Neurosci. 22, (1-2), 147, 2004.
  • 86. BENDENA W. G. Neuropeptide physiology in insects. Adv. Exp. Med. Biol. 692, 166, 2010.
  • 87. GADE G., HOFFMANN K. H. Neuropeptides regulating development and reproduction in insects. Physiol. Entomol. 30, (2), 103, 2005.
  • 88. STERKEL M., OLIVEIRA P. L., URLAUB H., HERNANDEZ- MARTINEZ S., RIVERA-POMAR R., ONS S. OKB, a novel family of brain-gut neuropeptides from insects. Insect. Biochem. Mol Biol. 42, (7), 466, 2012.
  • 89. HLAVACEK J. Oostatic peptides. Amino Acids. 44, (4), 1095, 2013.
  • 90. BOROVSKY D., NAUWELARES S., MILEGHEM A. V., MEYVIS Y., LAEREMANS A., THEUNIS C., BERTIER L., BOONS E. Control of mosquito larvae with TMOF and 60 kDa Cry4Aa expressed in Pichia pastoris. Pesticides. 1-4, 5, 2011.
  • 91. BOROVSKY D., POWELL C. R., DAWSON W. O., SHIVPRASAD S., LEWANDOWSKI D. J., DE BONDT H. L., DE RANTER C., DE LOOF A. Trypsin modulating oostatic factor (TMOF): A new biorational insecticide against mosquitoes. In: KONOPINSKA D., GOLDSWORTHY G. J., NACHMAN R. J., NAWROT J., ORCHARD I., ROSINSKI G., editors. Insects: Chemical, physiological and environmental aspects. Wroclaw: University of Wroclaw. pp. 131-40, 1998.
  • 92. WHETSTONE P. A., HAMMOCK B. D. Delivery methods for peptide and protein toxins in insect control. Toxicon. 49, (4), 576, 2007.
  • 93. BOROVSKY D. Trypsin-modulating oostatic factor: A potential new larvicide for mosquito control. J. Exp. Biol. 206, (Pt 21), 3869, 2003.
  • 94. SHEN H. Y., BRANDT A., WITTING-BISSINGER B. E., GUNNOE T. B., ROE R. M. Novel insecticide polymer chemistry to reduce the enzymatic digestion of a protein pesticide, trypsin modulating oostatic factor (TMOF). Pestic. Biochem. Physiol. 93, (3), 144, 2009.
  • 95. JEFFERS L. A., SHEN H., KHALIL S., BISSINGER B. W., BRANDT A., GUNNOE T. B., ROE R. M. Enhanced activity of an insecticidal protein, trypsin modulating oostatic factor (TMOF), through conjugation with aliphatic polyethylene glycol. Pest Manag. Sci. 68, (1), 49, 2012.
  • 96. AJAMHASSANI M., JALALISENDI J., GHADAMYARY M., BOROVSKY D. Effect of trypsin modulating oostatic factor (TMOF) on trypsin and chymotrypsin in Glyphodes pyloalis walker (Lep.: Pyralidae) and Hyphantria cunea drury (Lep.: Arctiidae). Pesticides. 1-4, 35, 2011.
  • 97. SCHERKENBECK J., ZDOBINSKY T. Insect neuropeptides: Structures, chemical modifications and potential for insect control. Bioorg. Med. Chem. 17, (12), 4071, 2009.
  • 98. PREDEL R., NACHMAN R. J. Efficacy of native FXPRLamides (pyrokinins) and synthetic analogs on visceral muscles of the american cockroach. J. Insect. Physiol. 47, (3), 287, 2001.
  • 99. MARCINIAK P., SZYMCZAK M., ROSINSKI G. Insect peptide hormones – a review of major families. Postępy Biologii Komorki. 34, (1), 43, 2011 [In Polish].
  • 100. OHNISHI A., HULL J. J., KAJI M., HASHIMOTO K., LEE J. M., TSUNEIZUMI K., SUZUKI T., DOHMAE N., MATSUMOTO S. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca²⁺/calmodulindependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1 (BmLsd1). J. Biol. Chem. 286, (27), 24101, 2011.
  • 101. NACHMAN R. J., KIM Y. J., WANG X. J., ETZKORN F. A., KACZMAREK K., ZABROCKI J., ADAMS M. E. Potent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor. Bioorg. Med. Chem. 17, (12), 4216, 2009.
  • 102. ALTSTEIN M., BEN-AZIZ O., SCHEFLER I., ZELTSER I., GILON C. Advances in the application of neuropeptides in insect control. Crop. Prot. 19, (8-10), 547, 2000.
  • 103. ALTSTEIN M., BEN-AZIZ O., DANIEL S., SCHEFLER I., ZELTSER I., GILON C. Backbone cyclic peptide antagonists, derived from the insect pheromone biosynthesis activating neuropeptide, inhibit sex pheromone biosynthesis in moths. J. Biol. Chem. 274, (25), 17573, 1999.
  • 104. YU N., NACHMAN R. J., SMAGGHE G. Characterization of sulfakinin and sulfakinin receptor and their roles in food intake in the red flour beetle Tribolium castaneum. Gen. Comp. Endocrinol. 188, 196, 2013.
  • 105. DOWNER K. E., HASELTON A. T., NACHMAN R. J., STOFFOLANO J. G., Jr. Insect satiety: Sulfakinin localization and the effect of drosulfakinin on protein and carbohydrate ingestion in the blow fly, I (Diptera: Calliphoridae). J. Insect. Physiol. 53, (1), 106, 2007.
  • 106. MARCINIAK P., KUCZER M., ROSINSKI G. New physiological activities of myosuppressin, sulfakinin and NVPlike peptide in Zophobas atratus beetle. J. Comp. Physiol. B. 181, (6), 721, 2011.
  • 107. NACHMAN R. J., HOLMAN G. M., HADDON W. F., VENSEL W. H. Effect of sulfate position on myotropic activity of the gastrin/CCK-like insect leukosulfakinins. Int. J. Pept. Protein Res. 33, (3), 223, 1989.
  • 108. NACHMAN R. J., VERCAMMEN T., WILLIAMS H., KACZMAREK K., ZABROCKI J., SCHOOFS L. Aliphatic amino diacid Asu functions as an effective mimic of Tyr(SO3H) in sulfakinins for myotropic and food intake-inhibition activity in insects. Peptides. 26, (1), 115, 2005.
  • 109. YU N., BENZI V., ZOTTI M. J., STALJANSSENS D., KACZMAREK K., ZABROCKI J., NACHMAN R. J. SMAGGHE G. Analogs of sulfakinin-related peptides demonstrate reduction in food intake in the red flour beetle, Tribolium castaneum, while putative antagonists increase consumption. Peptides. 41, 107, 2012.
  • 110. BENDENA W. G., DONLY B. C., TOBE S. S. Allatostatins: A growing family of neuropeptides with structural and functional diversity. Ann. NY. Acad. Sci. 897, 311, 1999.
  • 111. XIE Y., KAI Z. P., TOBE S. S., DENG X. L., LING Y., WU X. Q., HUANG J., ZHANG L., YANG X. L. Design, synthesis and biological activity of peptidomimetic analogs of insect allatostatins. Peptides. 32, (3), 581, 2011.
  • 112. KAI Z. P., HUANG J., XIE Y., TOBE S. S., LING Y., ZHANG L., ZHAO Y. C. YANG X. L. Synthesis, biological activity, and hologram quantitative structure-activity relationships of novel allatostatin analogues. J. Agric. Food Chem. 58, (5), 2652, 2010.
  • 113. LUBAWY J., CZARNIEWSKA E., KUCZER M., ROSINSKI G. Allatostatins – pleiotropic insect neurohormones. Postepy Biologii Komorki. 40, (3), 385, 2013.
  • 114. AUDSLEY N., MATTHEWS H. J., PRICE N. R., WEAVER R. J. Allatoregulatory peptides in Lepidoptera, structures, distribution and functions. J. Insect. Physiol. 54, (6), 969, 2008.
  • 115. COAST G. M., SCHOOLEY D. A. Toward a consensus nomenclature for insect neuropeptides and peptide hormones. Peptides. 32, (3), 620, 2011.
  • 116. AUDSLEY N., WEAVER R. J. Neuropeptides associated with the regulation of feeding in insects. Gen. Comp. Endocrinol. 162, (1), 93, 2009.
  • 117. JANSONS I. S., CUSSON M., MCNEIL J. N., TOBE S. S., BENDENA W. G. Molecular characterization of a cDNA from Pseudaletia unipuncta encoding the Manduca sexta allatostatin peptide (Mas-AST). Insect Biochem. Mol. Biol. 26, (8-9), 767, 1996.
  • 118. ABDEL-LATIEF M., MEYERING-VOS M., HOFFMANN K. H. Molecular characterisation of cDNAs from the fall armyworm Spodoptera frugiperda encoding Manduca sexta allatotropin and allatostatin preprohormone peptides. Insect Biochem. Mol. Biol. 33, (5), 467, 2003.
  • 119. WILLIAMSON M., LENZ C., WINTHER A. M., NASSEL D. R., GRIMMELIKHUIJZEN C. J. Molecular cloning, genomic organization, and expression of a C-type (Manduca sexta-type) allatostatin preprohormone from Drosophila melanogaster. Biochem. Biophys. Res. Commun. 282, (1), 124, 2001.
  • 120. AUDSLEY N., VANDERSMISSEN H. P., WEAVER R., DANI P., MATTHEWS J., DOWN R., VUERINCKX K., KIM Y. J., VANDEN BROECK J. Characterisation and tissue distribution of the PISCF allatostatin receptor in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 43, (1), 65, 2013.
  • 121. KREIENKAMP H. J., LARUSSON H. J., WITTE I., ROEDER T., BIRGUL N., HONCK H. H., HARDER S., ELLINGHAUSEN G., BUCK F., RICHTER D. Functional annotation of two orphan G-protein-coupled receptors, Drostar-1 and -2, from Drosophila melanogaster and their ligands by reverse pharmacology. J. Biol. Chem. 277, (42), 39937, 2002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-a87d0dea-1980-4fa5-aebf-ea792cd22759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.