Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 11 |
Tytuł artykułu

Morphophysiology, morphoanatomy, and grain yield under field conditions for two maize hybrids with contrasting response to drought stress

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the northern region of the state of Minas Gerais, lack of rainfall limits crop production in the field, which is possible only with irrigation. Agricultural and physiological practices have been intensively searched to overcome drought effects and consequently increase production. In this context, the objective of this study was to characterize morphophysiological and morphoanatomical changes and evaluate the attributes of grain yield under field conditions in two hybrids contrasting for drought tolerance. The experiment was carried out for 2 years (2010 and 2011) and the water deficit was imposed by stopping irrigation for 22 days at the pre-flowering stage. At the end of the stress treatment, leaf and root anatomy and morphophysiological characteristics (leaf water potential, chlorophyll content, percentage of dry leaves, leaf area, stomatal conductance, chlorophyll fluorescence, and anthesis-silking interval) were evaluated. For a better interpretation of tolerance of the hybrids in the evaluated characteristics, an index was used stress index. Hybrid DKB 390 (tolerant) surpassed hybrid BRS 1030 (sensitive) in grain yield. Furthermore, it presented lower percentage of dry leaves, higher flowering synchronization, higher stomatal conductance, and higher Fv/Fm relationship. In the root, DKB 390 showed higher amount of aerenchyma in the cortex, an increase of exodermis width, and numerous metaxylem with smaller diameter. In the leaf, it presented higher number of stomata and smaller distance between the vascular bundles in the leaf blade. The study concluded that significant morphophysiological and morphoanatomical changes, which are related to drought tolerance, occurred in DKB 390, leading to a higher yield in the field.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
35
Numer
11
Opis fizyczny
p.3201-3211,fig.,ref.
Twórcy
autor
  • Departamento de Biologia,Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Campus Universita´rio, caixa postal 37, Lavras, MG CEP 37200-000, Brazil
autor
  • Departamento de Biologia,Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Campus Universita´rio, caixa postal 37, Lavras, MG CEP 37200-000, Brazil
autor
  • Centro Nacional de Pesquisa de Milho e Sorgo, caixa postal 151, Sete Lagoas, MG CEP 35701-970, Brazil
  • Departamento de Biologia,Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Campus Universita´rio, caixa postal 37, Lavras, MG CEP 37200-000, Brazil
autor
  • Departamento de Biologia,Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Campus Universita´rio, caixa postal 37, Lavras, MG CEP 37200-000, Brazil
  • Centro Nacional de Pesquisa de Milho e Sorgo, caixa postal 151, Sete Lagoas, MG CEP 35701-970, Brazil
Bibliografia
  • Alvarez JM, Rocha JF, Machado SR (2008) Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function. Braz Arch Biol Technol 51:113–119
  • Araus JL, Sánchez C, Edmeades GO (2011) Phenotyping maize for adaptation to drought. In: Monneveux P, Ribaut J-M (eds)
  • Drought phenotyping in crops: from theory to practice. CGIAR Generation Challenge Programme, Texcoco, pp 263–283
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Asharaf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:199–238
  • Badu-Apraku B, Fakorede MAB, Oyekunle M, Akinwale RO (2011) Selection of extra-early maize inbreds under low N and drought at flowering and grain-filling for hybrid production. Maydica 56:29–42
  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621
  • Betrán FJ, Beck D, Bänziger M, Edmeades GO (2003) Genetic analysis of inbred and hybrid grain yield under stress and nonstress environments in tropical maize. Crop Sci 43:807–817
  • Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulations in wheat, maize and soybean: quantitative reappraisal. Field Crop Res 86:131–146
  • Carlesso R, Peiter MX, Petry MT, Woschick D (1997) Grain sorghum responses under water deficits on different growth stages. Cienc Rural 27:211–215
  • Dubey L, Prasanna BM, Hossain F, Verma DK, Ramesh B (2010) Phenotypic evaluation of a set selected exotic maize inbred lines for drought stress tolerance. Indian J Genet Plant Breed 70:355–362
  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145
  • Edmeades GO, Bolanos J, Elinge A, Ribaut J-M, Banziger M, Westgate ME (2000) The role and regulation of the anthesissilking interval in maize. In: Westgate ME, Boote KJ (eds) Physiology and modeling Kernel set in Maize. CSSAo, Madison, pp 43–73
  • Edreira JIR, Carpici EB, Sammarro D, Otegui ME (2011) Heat stress effects around flowering on kernel set of temperature and tropical maize hybrids. Field Crop Res 123:62–73
  • Ennajeh M, Vadel AM, Cochard H, Khemira H (2010) Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J Hortic Sci Biotechnol 85:289–294
  • Enstone DE, Peterson A, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351
  • Farooq M, Wahid A, Kokayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212
  • Gong C-M, Bai J, Deng J-M, Wang G-X, Liu X-P (2011) Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability. Plant Ecol 212:675–687
  • Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122:1–13
  • Grzesiak MT, Filek W, Hura T, Kocurek M, Pilarski J (2010) Leaf optical properties during and after drought stress in triticale and maize genotypes differing in drought tolerance. Acta Physiol Plant 32:433–442
  • Hao Z-F, Li X-H, Su Z-J, Xie C-X, Li M-S, Liang X-L, Weng J-F, Zhang D-G, Li L, Zhang S-H (2011) A proposed selection criterion for drought resistance across multiple environments in maize. Breed Sci 61:101–108
  • Jones HG, Serraj R, Loveys BR, Xiong L, Wheaton A, Price A (2009) Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct Plant Biol 36:978–989
  • Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725
  • Kutschera U, Pieruschka R, Berry JA (2010) Leaf development, gas exchange characteristics, and photorespiratory activity in maize seedlings. Photosynthetica 48:617–622
  • Lenochová Z, Soukup A, Votrubová O (2009) Aerenchyma formation in maize roots. Biol Plant 53:263–270
  • Li Y, Sperry JS, Shao M (2009) Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L.) hybrids of differing drought resistance. Environ Exp Bot 66:341–346
  • Lopes MS, Araus JL, Van Heerden PDR, Foyer CH (2011) Enhancing drought tolerance in C4 crops. J Exp Bot 62:3135–3153
  • Makbui S, Guler NS, Durmus N, Guven S (2011) Changes in anatomical and physiological parameters of soybean under drought stress. Turk J Bot 35:369–377
  • Makumbi D, Betran F, Banziger M, Ribaut J-M (2011) Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180:143–162
  • Martins AO (2012) Genetic and physiological inferences of drought tolerance in maize. Thesis, Universidade Estadual Norte Fluminense Darcy Ribeiro
  • Monneveux P, Sanchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180–191
  • Moussa HR, Abdel-Aziz SM (2008) Comparative response of drought tolerant and sensitive maize genotypes to water stress. Aust J Crop Sci 1:31–36
  • Mutava RN, Prasad PVV, Tuinstra MR, Kofoid KD, Yu J (2011) Characterization of sorghum genotypes for traits related to drought tolerance. Field Crop Res 123:10–18
  • Peña-Valdivia CB, Sánchez-Urdaneta AB, Trejo C, Aguirre RR, Cárdenas SE (2005) Root anatomy of drought sensitive and tolerant maize (Zea mays L.) seedlings under different water potentials. Cereal Res Commun 33:705–712
  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecol 87:1733–1743
  • Postma JA, Lynch JP (2011) Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiol 156:1190–1201
  • Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012) Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct Plant Biol 39:190–198
  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370
  • Shao H, Chu L, Jaleel CA, Zhao C (2008) Water-deficit stress induced anatomical changes in higher plants. C R Biol 331:215–225
  • Smit MA, Singels A (2006) The response of sugarcane canopy development to water stress. Field Crop Res 98:91–97
  • Souza TC, Castro EM, Pereira FJ, Parentoni SN, Magalhães PC (2009) Morpho-anatomical characterization of root in recurrent selection cycles for flood tolerance of maize (Zea mays L.). Plant Soil Environ 55:504–510
  • Souza TC, Magalhães PC, Pereira FP, Castro EM, Silva Junior JM, Parentoni SN (2010) Leaf plasticity in successive selection cycles of ‘Saracura’ maize in response to periodic soil flooding. Pesqui Agropecu Bras 45:16–24
  • Souza TC, Magalhães PC, Pereira FJ, Castro EM, Parentoni SN (2011) Morpho-physiology and maize grain yield under periodic soil flooding in successive selection cycles. Acta Physiol Plant 33:1877–1885
  • Souza TC, Magalhães PC, Castro EM, Albuquerque PEP, Marabesi AM (2013) The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiol Plant 35:515–527
  • Tollenaar M (1992) Is low density a stress in maize? Maydica 37:305–311
  • Vitale L, Di Tommasi P, Arena C, Fierro A, Santo AV, Magliulo V (2007) Effects of water stress on gas exchange of field grown Zea mays L. in Southern Italy: an analysis at canopy and leaf level. Acta Physiol Plant 29:317–326
  • Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-a5adc1d8-ba2e-45ca-9495-cac43dec3f9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.