Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 4 |
Tytuł artykułu

Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to investigate the effects of arbuscular mycorrhizal fungus (AMF) inoculation on growth and drought tolerance of Poncirus trifoliata seedlings. The seedlings were inoculated with or without Glomus mosseae before exposure to a short-term (3 days) water depletion, and relevant physiological and biochemical parameters (plant height, chlorophyll content, relative water content, activity of antioxidant enzymes) and expression patterns of several stress-responsive genes were examined. Inoculation with G. mosseae led to growth promotion of the seedlings, as revealed by larger plant height and higher relative water and chlorophyll contents. When subjected to drought treatment, the AMF-inoculated (AM) plants showed better tolerance than the nonmycorrhizal (NAM) plants. Under drought, the AM plants exhibited higher level of proline and activity of two antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (POD). In addition, mRNA abundance of four genes involved in reactive oxygen species homeostasis and oxidative stress battling was higher in the AM plants when compared with the NAM plants. These results indicate that AMF inoculation stimulated growth and enhanced drought tolerance of the seedlings, which may be due to activation of an arsenal of physiological, biochemical and molecular alterations.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
33
Numer
4
Opis fizyczny
p.1533-1542,fig.,ref.
Twórcy
autor
  • Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
autor
  • Key Laboratory of Horticultural Plant Biology (MOE), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
Bibliografia
  • Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136:426–436
  • Augé RM (2001) Water relations, drought and vesicular mycorrhizal fungi symbiosis. Mycorrhiza 11:3–42
  • Bolandnazar S (2009) The effect of mycorrhizal fungi on onion (Allium cepa L.) growth and yield under three irrigation intervals at field condition. J Food Agric Environ 7:360–362
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
  • Bressano M, Curetti M, Giacheroa L, Gil SV, Cabello M, March G, Ducasse DA, Luna CM (2010) Mycorrhizal fungi symbiosis as a strategy against oxidative stress in soybean plants. J Plant Physiol 167:1622–1626
  • Cavagnaro TR, Dickson S, Smith FA (2010) Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant Soil 329:307–313
  • Cho EJ, Lee DJ, Wee CD, Kim HL, Cheong YH, Cho JS, Sohn BK (2009) Effects of AMF inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci Hortic 122:633–637
  • Cuming AC, SuH Cho, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss, Physcomitrella patens. New Phytol 176:275–287
  • Debiane D, Garc¸on G, Verdin A, Fontaine J, Durand R, Shirali P, Ferjani AG, Sahraoui AL (2009) Mycorrhization alleviates benzo[a]pyrene-induced oxidative stress in an in vitro chicory root model. Phytochemistry 70:1421–1427
  • Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049
  • Estrada-Luna AA, Davies FT Jr (2003) Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. J Plant Physiol 160:1073–1083
  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100
  • Hassine AB, Ghanem ME S, Bouzid LuttsS (2008) An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycine betaine in response to salinity and water stress. J Exp Bot 59:1315–1326
  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220
  • Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230
  • Kytöviita MM, Ruotsalainen AL (2007) Mycorrhizal benefit in two low Arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315
  • Latef AA, He CX (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233
  • Llorente F, López-Cobollo RM, Catalá R, Martínez-Zapater JM, Salinas J (2002) A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13–24
  • López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–457
  • Molinari HB, Marur CJ, Daros E, Marilia Campos KF, Carvalho JF, Filho JC, Pereira LF, Vieira LG (2007) Evaluation of the stressinducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229
  • Navarro A, Sánchez-Blanco MJ, Mortec A, Bañón S (2009) The influence of mycorrhizal inoculation and paclobutrazol on water and nutritional status of Arbutus unedo L. Environ Exp Bot 66:362–371
  • Poerwanto R, Inoue H, Kataoka I (1989) Effects of temperature on the morphology and physiology of the roots of trifoliate orange budded with Satsuma mandarin. J Jpn Soc Hortic Sci 58:267–274
  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750
  • Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404
  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359
  • Posada RH, Franco LA, Ramos C, Plazas LS, Suarez JC, Alvarez F (2008) Effect of physical, chemical and environmental characteristics on arbuscular mycorrhizal fungi in Brachiaria decumbens (Stapf) pastures. J Appl Microbiol 104:132–140
  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398
  • Rueda-Puente EO, Amador BM, Cervantes Hernández TL, Herrera MA, Medina SM, Barrera LE (2010) Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D’Arcy and Eshbaugh) germination under stressing abiotic conditions. Plant Physiol Biochem 48:724–730
  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317
  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) Arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167:862–869
  • Shi S, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–922
  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Elsevier, London
  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323
  • Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187
  • Valentine AJ, Osborne BA, Mitchell DT (2001) Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci Hortic 88:177–189
  • Vallino M, Martino E, Boella F, Murat C, Chiapello M, Perotto P (2009) Cu, Zn superoxide dismutase and zinc stress in the metaltolerant ericoid mycorrhizal fungus Oidiodendron maius Zn. FEMS Microbiol Lett 293:48–57
  • Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH (2011) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2894
  • Yao Q, Wang LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-9d532573-6772-47aa-a981-f0d632ae279a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.