Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | Special Issue S2 |
Tytuł artykułu

Underwater target direction of arrival estimation by small acoustic sensor array based on sparse Bayesian learning

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assuming independently but identically distributed sources, the traditional DOA (direction of arrival) estimation method of underwater acoustic target normally has poor estimation performance and provides inaccurate estimation results. To solve this problem, a new high-accuracy DOA algorithm based on sparse Bayesian learning algorithm is proposed in terms of temporally correlated source vectors. In novel method, we regarded underwater acoustic source as a first-order auto-regressive process. And then we used the new algorithm of multi-vector SBL to reconstruct the signal spatial spectrum. Then we used the CS-MMV model to estimate the DOA. The experiment results have shown the novel algorithm has a higher spatial resolution and estimation accuracy than other DOA algorithms in the cases of less array element space and less snapshots
Słowa kluczowe
Wydawca
-
Rocznik
Tom
24
Opis fizyczny
p.95-102,fig.,ref.
Twórcy
autor
  • School of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Prov., 212003, China
autor
  • School of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Prov., China
Bibliografia
  • 1. Daegil Park, Jaehoon Jung, Kyungmin Kwak,Wan Kyun Chung, Jinhyun kim.:3D underwater localization using EM waves attenuation for UUV docking, IEEE Underwater Technology (UT),pp.1-4,2017.
  • 2. Mohd Shahrieel Mohd Aras, Muhammad Nizam Kamarudin,et al.:Analysis of integrated sensors for unmanned underwater vehicle application,2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS),pp.224-229,2016.
  • 3. Despoina Pavlidi,Symeon Delikaris-Manias,Ville Pulkki,et al.:3D DOA estimation of multiple sound sources based on spatially constrained beamforming driven by intensity vectors,2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),pp.96-100,May 2016.
  • 4. Shigeaki Okumura, Hirofumi Taki,Toru Sato.:Stabilization techniques for high resolution ultrasound imaging using beam space Capon method,2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),pp.892-896,2015.
  • 5. Zaidao Wen, Biao Hou , Licheng Jiao .:Joint Sparse Recovery With Semi-supervised MUSIC,IEEE Signal Processing Letters , vol.24,pp.629-633,2017.
  • 6. Chun-Yu Kang, Qian-Yan Li,Yi-Ming Jiao,et al.: Direction of arrival estimation and signal recovery for underwater target based on compressed sensing, International Congress on Image and Signal Processing(CISP), pp.1277-1282,2015.
  • 7. Md Mashud Hyder , Kaushik Mahata.: Direction-of-Arrival Estimation Using a Mixed Ɩ20 Norm Approximation,IEEE Transactions on signal Proc, vol.58, no 9, pp. 4646-4655, 2010.
  • 8. WANG, B., Li, C. and Dai, Y. W.: DOA estimation method based on spatial compressive sampling for underwater acoustic target,Acta Armamentarii, vol.34, no 11, pp. 14791483, 2013.
  • 9. Carlin M, Rocca P, Oliveri G, et al.: Directions-of-arrival estimation through Bayesian compressive sensing strategies, IEEE Transactions on Antennas and Propagation, vol.61, no7, pp. 3828-3838, 2013.
  • 10. Sun, L.,Wang, H. L., Xu, G. J. et al.: Efficient Direction-ofarrival Estimation via Sparse Bayesian Learning, Jounal of Electronics & Information Technology, vol.35, no5, pp.1196-1201 ,2013.
  • 11. Anup Das, Terrence J. Sejnowski.: Narrowband and Wideband Off-Grid Direction-of-Arrival Estimation via Sparse Bayesian Learning,IEEE Journal of Oceanic Engineering,pp.1-11,2017.
  • 12. Peter Gerstoft, Christoph F. Mecklenbräuke.: Wideband Sparse Bayesian Learning for DOA Estimation from multiple snapshots , IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM),pp.1-5,2016.
  • 13. Peter Gerstoft,Christoph F. Mecklenbräuke,et al.: Multisnapshot Sparse Bayesian Learning for DOA, IEEE Signal Processing Letters, vol. 23,pp.1469-1473,2016.
  • 14. MacKay, D.:Bayesian Interpolation Neural Computation, vol.4, no 3, pp.415-447 , May. 1992.
  • 15. Wang, F. S., Zhang, L. R., Zhou, Y., et al.: Multiple Measurement Vectors for Compressed Sensing: Model and Algorithms Analysis,Signal Processing, vol.28, no 6, pp.785792, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-9c4b0e3c-823c-4d43-afbd-b62b39eab6f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.