Warianty tytułu
Języki publikacji
Abstrakty
Different reproductive strategies among populations might affect population growth rates, and a population's vulnerability to threats. Population viability analysis may help guide population management and the identification of populations more prone to decline, allowing a preventive approach to avoid population declines and extinctions. The objective of the present study was to evaluate if differences in reproductive strategy translate into differential intrinsic vulnerability among different populations of Phyllostomus hastatus. We used the software VORTEX to model the dynamics and viability of P. hastatus populations under different reproductive scenarios. We modeled a total of 12 scenarios evaluating variations in reproductive characteristics of the species (monoestry vs polyestry, harem size, and infant mortality rate). Phyllostomus hastatus populations were viable under most scenarios, except with scenarios incorporating monoestry and high pup mortality. Our results demonstrate that both reproductive strategies (monoestry and polyestry) found in P. hastatus result in viable and stable populations under natural conditions. However, polyestrous populations have higher growth rates, making them more resilient to natural and/or anthropogenic disturbances. A significant portion of the more resilient populations in South America overlap the Amazon Forest, a continuous and preserved habitat under low human pressure, which bodes well for the long-term persistence of these populations. On the other hand, the populations of the species that evolved the monoestrous reproductive strategy are located in Mesoamerica, a Biodiversity Hotspot that is under severe human impacts, particularly from habitat loss. Conservation biologists and managers must take into account intra-specific demographic differences of species when planning for their long-term persistence.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.365-369,fig.,ref.
Twórcy
autor
- Programa de Pos-Graduacao em Ecologia e Evolucao, Instituto de Ciencias Biologicas, Departamento de Ecologia, Universidade Federal de Goias, Goiania, 74001-970 Goias, Brazil
autor
- Programa de Pos-Graduacao em Ecologia e Evolucao, Instituto de Ciencias Biologicas, Departamento de Ecologia, Universidade Federal de Goias, Goiania, 74001-970 Goias, Brazil
autor
- Programa de Pos-Graduacao em Ecologia e Evolucao, Instituto de Ciencias Biologicas, Departamento de Ecologia, Universidade Federal de Goias, Goiania, 74001-970 Goias, Brazil
Bibliografia
- 1. L. M. S. Aguiar , D. Brito , and R. B. Machado . 2010. Do current vampire bat (Desmodus rotundus) population control practices pose a threat to Dekeyser's nectar bat's (Lonchophylla dekeyseri) long-term persistence in the Cerrado? Acta Chiropterologica, 12: 275–282. Google Scholar
- 2. S. R. Beissinger , and D. R. McCullough . 2002. Population viability analysis. University of Chicago Press, Chicago, 593 pp. Google Scholar
- 3. K. M. Bohn , C. F. Moss , and G. S. Wilkinson . 2009. Pup guarding by greater spear-nosed bats. Behavioral Ecology and Sociobiology, 63: 1693–1703. Google Scholar
- 4. J. W. Boughman 2006. Selection on social traits in greater spear-nosed bats, Phyllostomus hastatus. Behavioral Ecology and Sociobiology, 60: 766–777. Google Scholar
- 5. D. Brito 2009. Análise de viabilidade de populações: uma ferramenta para a conservação da biodiversidade no Brasil. Oecologia Brasiliensis, 13: 452–469. Google Scholar
- 6. B. W. Brook , J. R. Cannon , R. C. Lac y, C. Mirande , and R. Frankham . 1999. Comparison of the population viability analysis packages gapps, INMAT, RAMAS and VORTEX for the whooping crane (Grus americana). Animal Conservation, 2: 23–31. Google Scholar
- 7. B. W. Brook , J. J. O'Grady , A. P. Chapman , M. A. Burgman , H. R. Akçakaya , and R. Frankham . 2000. Predictive accuracy of population viability analysis in conservation biology. Nature, 404: 385–387. Google Scholar
- 8. G. Ceballos , and P. R. Ehrlich . 2002. Mammal population losses and the extinction crisis. Science, 296: 904–907. Google Scholar
- 9. B. Collen , E. Bykova , S. Ling , E. J. Milner-Gulland , and A. Purvis . 2006. Extinction risk: a comparative analysis of Central Asian vertebrates. Biodiversity and Conservation, 15:1859–1871. Google Scholar
- 10. J. E. Duchamp , and R. K. Swihart . 2008. Shifts in bat community structure related to evolved traits and features of human-altered landscapes. Landscape Ecology, 23: 849–860. Google Scholar
- 11. T. J. Foose 1993. Riders of the last ark: the role of captive breeding in conservation strategies. Pp. 149–178, in The last extinction ( L. Kauffman and K. Mallory , eds.). MIT Press and New England Aquarium, Cambridge, 255 pp. Google Scholar
- 12. T. J. Foose , R. Lande , N. R. Flesness , G. Rabb , and B. Read . 1986. Propagation plans. Zoo Biology, 5: 139–146. Google Scholar
- 13. A. L. Gardner (ed.) 2008. Mammals of South America, Volume 1: Marsupials, xenarthrans, shrews and bats. University of Chicago Press, Chicago, 669 pp. Google Scholar
- 14. J. B. Hughes , G. C. Daily , and P. R. Ehrlich . 1997. Population diversity: its extent and extinction. Science, 278: 689–692. Google Scholar
- 15. K. E. Jones , A. Purvis , and J. L. Gittleman . 2003. Biological correlates of extinction risk in bats. American Naturalist, 161: 601–614. Google Scholar
- 16. R. C. Lacy , M. Borbat , and J. P. Pollack . 2009. Vortex: a stochastic simulation of the extinction process, version 9.95. Chicago Zoological Society, Brookfield, IL. Available at http://www.vortex9.org/vortex,html. Google Scholar
- 17. G. W. Luck , G. C. Daily , and P. R. Ehrlich . 2003. Population diversity and ecosystem services. Trends in Ecology and Evolution, 18: 331–336. Google Scholar
- 18. D. E. McCauley 1991. Genetic consequences of local population extinction and recolonization. Trends in Ecology and Evolution, 6: 5–8. Google Scholar
- 19. G. F. McCracken , and J. W. Bradbury . 1981. Social organization and kinship in the polygynous bat Phyllostomus hastatus. Behavioral Ecology and Sociobiology, 8: 11–34. Google Scholar
- 20. G. F. McCracken , and G. S. Wilkinson . 2000. Bat mating systems. Pp. 321–362, in Reproductive biology of bats ( E. G. Chrichton and P. H. Krutzsch , eds.). Academic Press, London, 510 pp. Google Scholar
- 21. R. A. Medellín , and K. H. Redford . 1992. The role of mammals in the Neotropical forest-savanna boundaries. Pp. 519–548, in Nature and dynamics of forest-savanna boundaries ( P. A. Furley , J. Proctor , and A. Patter , eds.). Chapman and Hall, London, 616 pp. Google Scholar
- 22. C. F. J. Meyer , J. Fründ , W. P. Lizano , and E. K. V. Kalko . 2008. Ecological correlates of vulnerability to fragmentation in Neotropical bats. Journal of Applied Ecology, 45: 381–391. Google Scholar
- 23. R. A. Mittermeier , C. G. Mittermeier , T. M. Brooks , J. D. Pilgrim , W. R. Konstant , G. A. B. Da Fonseca , and C. Kormos . 2003. Wilderness and biodiversity conservation. Proceedings of the National Academy of Sciences of the USA, 100: 10309–10313. Google Scholar
- 24. N. Myers , R. A. Mittermeier , C. G. Mittermeier , G. A. B. Da Fonseca , and J. Kent . 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858. Google Scholar
- 25. L. V. Polishchuk 2002. Conservation priority for Russian mammals. Science, 297: 1123. Google Scholar
- 26. T. A. Porter , and G. S. Wilkinson . 2001. Birth synchrony in greater spearnosed bats (Phyllostomus hastatus). Journal of Zoology (London), 253: 383–390. Google Scholar
- 27. M. A. Pryde , C. F. J. O'Donnell , and R. J. Barker . 2005. Factors influencing survival and long-term population viability of New Zealand long-tailed bats (Chalinolobus tuberculatus): implications for conservation. Biological Conservation, 126: 175–185. Google Scholar
- 28. K. H. Redford 1992. The empty forest. Bioscience, 42: 412–422. Google Scholar
- 29. J. M. Reed , L. S. Mills , J. B. Dunning , E. S. Menges , K. S. McKelvey , R. Frye , S. R. Beissinger , M. C. Anstett , and P. Miller . 2002. Emerging issues in population viability analysis. Conservation Biology, 16: 7–19. Google Scholar
- 30. K. Safi , and G. Kerth . 2004. A comparative analysis of specialization and extinction risk in temperate-zone bats. Conservation Biology, 18: 1293–1303. Google Scholar
- 31. M. Santos , L. F. Aguirre , L. B. Vázquez , and J. Ortega . 2003. Phyllostomus hastatus. Mammalian Species, 722: 1–6. Google Scholar
- 32. M. E. Soulé 1987. Viable populations for conservation. Cambridge University Press, Cambridge, 204 pp. Google Scholar
- 33. A. A. Stern , and T. H. Kunz . 1998. Intraspecific variation in postnatal growth in the greater spear-nosed bat. Journal of Mammalogy, 79: 755–763. Google Scholar
- 34. D. E. Wilson 1979. Reproductive patterns. Pp. 317–378, in Biology of the bats of the New World: family Phyllostomidae ( R. J. Baker , J. K. Jones , and D. C. Carter , eds.). Texas Tech University Press, Lubbock, 441 pp. Google Scholar
- 35. D. E. Wilson , and D. M. Reeder (eds.). 2005. Mammal species of the World: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, 2142 pp. Google Scholar
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-9b8ed43e-468e-42ce-9d29-012412a48e08