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Summary. A computational solution of the spatial
motion problem of a loose mixture in a vibrating tray by
finite-difference method is obtained in the article.

The essence of the method consists in the fact that the
differential operators regarding the spatial variables are
replaced by finite-difference operators in the mesh points.
In that time, the finite-difference operator is to be
approximate the differential one as accurately as it
possible. Finite-difference operators with the second order
of accuracy are used.

Boundary conditions introduce changes in the coefficients
of difference operators. We assume that these changes are
already have been taken into account in the equations
which correspond a system of ordinary differential
equations relative to the vector variable. The dominant
terms of the dynamics equations reckon in the summands
of equations. They affect the convergence speed of the
approximate solutions to the exact one. To the right-hand
members the terms, which contain mixed derivatives, are
reckon in. In this form, the equations are prepared for the
application of the difference splitting method.

In order to obtain a stationary solution of the problem, the
following points are used: the presence of dissipation in
the problem (forces of internal and external friction) leads
to the fact that under constant external conditions (the
boundary conditions do not depend on time), the flow of
the loose mixture stabilizes with time and irrespective of
the initial conditions reach its stationary state. Therefore,
the initial-boundary-value problem with invariable
boundary conditions is formulated further. And the
stationary solution is considered as asymptotic.

The multidimensionality of the problem leads to the need
to solve systems containing a large number of equations.
In addition, when solving the latter, numerical instability
of the algorithm may arise is possible. One way of solving
the equations is to move from differential equations to a
system of algebraic equations by replacing the time-
differentiation operator with finite difference. In the
following, an implicit difference scheme corresponding to
the Crank-Nicholson method with a double step in time,
with a second order of accuracy, both in time and in
spatial variables, is applied.

Keywords: spatial motion, bulk mixture, finite-difference
method, differential operators.

INTRODUCTION

The research of the loading process of the working
organs of grain separators requires consideration of the
spatial movement of the loose mixture along their
surfaces. During the work [1] the equations system of
spatial motion of a loose mixture flow is obtained along
the inclined vibro-sieve, and the boundary conditions on
the surfaces which restrict the volume of the loose
mixture are made. However, the resulting system of
equations is quite complex and requires numerical
solution.

ANALYSIS OF RESEARCHES AND PUBLICATIONS

There are no ready-made algorithms for solution of
equation systems of spatial motion of a loose mixture.
Solved problems like this have not been found in the
literature.

Numerical methods for physical problems solving are
presented in articles [2-7]. They present the foundations
of numerical methods for systems of linear and nonlinear
equations, as well as differential and integral equations.

The solution method of nonlinear boundary problems
with an unknown (free) boundary are considered in the
article [8]. The basic computational methods for solving
stationary problems for elliptic equations of the second
and fourth order are given. Separately, a class of inverse
problems with a free boundary is singled out. The
possibilities of developed methods for numerical solution
of applied problems are presented.

A universal and effective method for problems
solving in mathematical physics is the finite difference
method or the net-point method [9-12]. It allows to reduce
the approximate solution of the partial differential
equations to the solution of algebraic equations systems.
The multi-net-point iterative method is considered in the
articles [13, 14]. It is one of the most widely used
methods at the present time for solving net-point
boundary problems.

THE PURPOSE OF THE RESEARCH
Numerical solution of the problem of spatial motion
of a loose mixture in a vibro-sieve by a finite-difference
method.
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THE RESULTS OF RESEARCH

The equations system of spatial motion of a loose
mixture obtained in research [1] is reduced to the
equations of the planned flow:
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where: u, v — are the components of the velocity vector of
the motion of a continuous medium; X, y — coordinates of
the Cartesian coordinate system; § — angle of inclination
of the sieve; y is the particles density of the mixture; & —
thickness of the layer, counted along the normal to the
bottom of the tray down to the free surface; ¢ — time; x —
the dynamic shear-viscosity coefficient; C; — a
phenomenological coefficient, analogous to the Shezi
coefficient.

The three equations (1-3) contain four unknown
functions 4, y,u,v. For the closure of this equations
system, a kinematic boundary condition is involved (here
w=0):

%+ ah+V@=0. @)
o ox oy

The area of attribution of unknown functions is the

surface T, ={0<x </, /2<y <[ /2} (fig. 1).
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Fig. 1. Inclined vibrating tray

The boundary of this area consists of lines
L1:{0<x<l,y:—ll/2}, L2={O<x<l,y:ll/2},
L :{x:0,—ll/2<y<ll /2},L4 :{)c:l,—11/2<y<l1 /2} ,

Where / is the length of the tray, /; is the width of the
tray.

Distributions are specified at the boundary L,

h(t,0,)=H(t,y), 7(1,0,)=G"(t,y),

(%)
u(t,0,y)=U%(t,»), v(t.0,»)=V"(t).
Conditions:
v(t,x,—1, /2) =0, ou &y, =0, (6)
=1tz M L=
C
v(t,x,l,/2)=0, ou +—=u =0. (7
y=hi2 M i

are fulfilled on lines L, L,.
For numerical solution of the problem, let’s use the

finite-difference method [12, 15]. In the region X, let’s
introduce an analytical grid with constant pitch along

x:h,=1l/n,and along y:h, =1 /n,, where n,,n,- the
number of nodes along the axis Ox,Oy , accordingly (Fig.
2).
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Fig. 2. Analytical grid

The nodes coordinate of the grid will be equal:
x;=ih, i=0,n), yy=kh,—=1,/2(k=0,n)).

The essence of the finite-difference method is that
differential operators by spatial variables are replaced by
finite-difference operators in the nodes of the grid. There
are many ways And most
importantly, the finite-difference operator is to be
approximate differential one most accurately. Let’s use
finitely difference operators having the second order of

of such substitution.

accuracy:

2
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The terms containing the mixed derivatives will be
approximated as follows:
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The summands representing the convective
derivative in equations (1-4) (the second and third
summands in the left part of the equations which were
specified) require a special approximation, what is related
to the stability of finite-difference scheme. The authors of
works [12, 16] propose the following approximation
method, which we are going to consider exemplificative
of a differential operator in the form of uou/oOx. If an

actor u# >0, then it is recommended to take a difference
operator sort of "back":

U —Uj_1
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ox )y h

X
If the actor u <0, then it is necessary to take a

difference operator such sort of "forward":

Ooul - Ui — Uy
ua— Ry —
X ik

X

In the case if u is the coefficient by a differential
operator changes the sign from point to point, then it is
necessary to represent this coefficient in the form of a
summands u* = (u +|u|) /2 and

sum of two

u_:(u—|u|)/ 2 corresponding to the positive and

negative values of the function u, correspondingly. Then:

(5], v () (35
Ox M ik ik o ik Ox ik o .

In this case also the first summand is approximated
by the difference operator "back", and the second
summand by the operator "forward":
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Analogous actions can be committed for the
operators of the form vou /0y :
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It can be noted that the difference approximation of
differential operators leads them to difference operators of
the form:

1 X X X
Uoy T ik ik G i byt -
with coefficients:
S
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etc.

Let’s introduce an extended grid by adding nodes

n ,+1
{xisyfl}[;;rl 5 {xiayny+l} 5 {xnx+19yk }::_1 (ﬁg 2)

Let’s extend the equation (1-4) to the region. Thereby this
attract attention to the additionally introduced nodes. In
the approximation of differential operators at the
y==I[/2, the functions in nodes

n,+l1

i=1

boundary points

extending beyond the region ¥; (on Fig. 2 they are
marked by a cross) are defined as follows: /4,y expand
evenly, v expand oddly, and u expand using boundary

conditions (6, 7):

hi,—l = hi,l7 Vi1 =7il»
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: P :

(i =1,n, + 1).

For the boundary x=/, when determining the
values of functions in nodes going beyond the region X,
let’s use the boundary conditions (10)

Up 41k TUn k> Va+1k = Va -1k (k :@) QY

Let’s write the difference equations for the node

ny,hy,

{xi » Yk }izl,lézo

equations (1-4)

of the grid region corresponding to the
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a; = k_ Cyp =2 *_ by =u *_ the equations. These equations are a system of ordinary
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The right sides are equal:
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The action of the matrices which enter into the right

sides of relations (23) is determined by form
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The structure of equation (20) is chosen in
compliance with the recommendations of the authors of
papers [16, 17]. Here, the main summands of the
dynamics equations, which influence on rapidity of
convergence of approximate solutions to the exact
solution, are related to the summand €2Z . Summands that
contain mixed derivatives are related to the right sides of
equations. In this form, the equations have been prepared
for the application of the difference splitting method.

In order to obtain a stationary solution of the problem
it is possible to use the following considerations: the
presence of dissipation in the sum (of internal and
external friction forces) leads to the fact that under
constant external conditions (the boundary conditions do
not depend on time), the system (flow CC) with time
stabilizes. And irrespective of the initial conditions with
time it comes to its stationary state. Therefore, the initial-
boundary-value problem with boundary conditions is
defined further. And the stationary solution is considered
as asymptotic with # — oo .

It should be noted that the motion of a thin layer
along a solid surface can be unstable, as it occurs in the
case of a flowing thin film of water [18].

The multidimensionality of the problem (n=2,3)

result in the necessity of systems solution containing a
large number of equations of the form (20). Moreover,
when solve the latest, a numerical instability of the
algorithm may occur [12, 15]. One of the methods for
solution of equations (20) consists in the transition from
differential equations to a system of algebraic equations
by replacing the time-differentiation operator with finite-
difference one. Functions Z = Z(¢) are considered at some

finite interval of time [0,77]. This interval is divided into

small subintervals [¢/,¢/ +1] with a certain pitch in time
o/ ="' ¢/ This pitch can be constant. In this case
let’s not specify the top index t/ =7, Time
differentiation is replaced by a difference operator:
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dz _7"'-7/

dt T
and equation (20) is replaced by the system of finite-
difference equations:

J+Hl = - B
22 oy F.
T (33)
The operator ¢_ and the right side / are chosen so

that the approximation of equation (20) would have a
maximal order, and the sequence determination process

bl

Z/ would be stable. Here explicit and implicit difference
schemes can be applied, when:

~ .y ~ —¢d
- Oz=ozfT L, F=FT", - (349
t=pi*1

~ =1~
- Oz = OZ| . F=F| .- (35

In the case of an explicit scheme, equation (33) is reduced
to a recurrence relation:

7t =7 +T(Fj+1 —Q/tzi ) 7°=7(0) (j=0,1..), (36)

which gives the simplest way of solution of difference
equations. However, the algorithm in this case is
conditionally stable. There must be some relation between

time pitch 7 and spatial pitch %A, , which results in the

necessity of making very small pitches in time. In case of
violation of the indicated mentioned relation, the
numerical instability of the algorithm occurs. The implicit
scheme, as a rule, is stable. Calculations can be carried
out with a sufficiently great time pitch. These assertions
are based on the available theorems of the convergence
and stability of the concerned algorithms. Unfortunately,
these theorems are proved only for linear equations of the
standard type (hyperbolic, parabolic). In the case of
nonlinear equations of non-standard type, we have to
apply the proper algorithms by touch, conducting the
proper numerical experiments. In this case, the
justification of the application of one or another algorithm
is the "plausibility" of the obtained result, which is
heuristic in nature.

In the future we will apply the implicit difference
scheme which is proper to the Crank-Nicholson method
with a double time pitch:
zZM—z7t 4l -1
3| (@) +(@2) = P 0. 67)

having a second order of accuracy by the time and spatial

variables. Here the vector Z’/*' is unknown and the

system is nonlinear. Linearization of systems is carried
. j+1

out. Each summand in the operator (QZ )j ™ has the form

of a product of some function of these unknowns (of
coefficient) on a finite-difference operator of numerical
differentiation. So this coefficient is calculated by the way

of the functions which are specified at the time station ¢/
These functions are determined by the way of one time
pitch 7 per an explicit scheme ("zero" pitch) according to
the recurrence relation (36):
L. 7] :Zj’1+T(Fj’1—Qj’IZj’1)_- LG8
Let’s-agreed notation:y

Q/ :Q(tj,Zj), F/ :F(zf,z'f)_-ﬂ

If we solve equation (37) relative to an unknown
vector Z/*:

(E + fo)Z-"+1 = (E—zQ-" )Z-/’“ +2¢F7. (39)

We will obtain the equations which, according to (21-
24), take on form:

1/ . 1/ i .
(EG)HQ ]Hﬁl :(E(l)—rQ JH"‘+21FJ, (40)
1 1J . 1 11/ 4 .
E+7tQ |H'W =|E-tQ |H/7 +2rF/,
2 ) . 3/ 1 u/ 1
E+7Q |G/ +rQ UM +7Q VT =

2 22J - 23] . 2 - T
=|E-7tQ |H 7 +tQ U7 +tQ/ V7 +2¢ F/,

27

3 . 237 . 247 .
E+7tQ |G/ +rQ UM+ Q v/ = 41)

2 2] . 23 . 24 - L
=|E-tQ |H ™" +tQ U™+t Q' V/7 +2rF/,
WA | 0 | 4 447 -
tQ HY+71Q GM+ | E+rQ (VT =
a - ni 4 447 ) L
=t Q/H T v Q U | E-1Q (VT w20

1
where: (E H) =My .
ik
To avoid the necessity to solve systems (39) of high-
order, let’s use the two-cyclic multicomponent splitting
method [12]. Let’s represent a matrix €2 in the form of a
sum:

1 2 3 4
Q=0+0+Q+Q, (42)
where,
A9 0 0 0
| 0 AW
Q= . (43)
0 0 AV+c®4cr 0
0 0 0 AW + pt»
4% 0 0 0
5 0 AW 0
Q= , (44)
0 0 AY+c® 0
0 0 0 AY + D™ 1
0 0 0 0
3 0 c® o
Q= , (45)
A(3x) B(3x) 0 0
0 0 0 0
0 0 0 0
4 0 D(4Y)
Q= , (46)
0 0 0 0
A(4)/) B(4y) 0 0
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(CIU), =Sy, (CIV), =Sy, @7)

ik
Vik Vik
As a zero pitch, let’s consider the definition of the
vector . by the way of relation (36). Then we divide

the interval [tj A ] into equal subinterval ("fractional
pitch")

[ (45 ’ 1 J ) [ i35 |t j—4/5:| i [ (=205 , t-7_3/5J i
|:tj—l/5,tj—2/5:|’ |:tj+l/5,tj—1/5:| , |:tj+2/5’tj+1/5:| ,

|:tj+3/5,tj+2/5:|’ |:tj+4/5’tj+3/5:|’ I:tj-*—]’tj+4/5:| and on in

each subinterval we will solve the following
corresponding equations

Y 1y
(E+§Qj 77745 = (E—%QJZ-’I (first pitch) (48)

2\ 2\
(E+%QJZ/_3/5 :[E—%Q 773 (second pitch) (49)

2
AR A S ¥ 2 (fifth pitch)  (52)
4 4 .
E+LQ |25 = E-£Q |2/ (sixthpitch)  (53)
2 2
T2\ 4305 T2\ s -
E+-Q |z’ E-—Q |z’ (seventh pitch) (54)
2 2 P
2 X 2 .
(E+ %Qj 745 = (E —ggj Z/5 (eighth pitch) (55)
T ) T Y eans .
E+§Q VARRES E_EQ z/ (ninth pitch)  (56)

It is proved that the system of equations (48-56) is
equivalent to equations (37) accurate within member of

order O(rz) [12].

First and second fractional pitches
If the index notation of the quantities is used, then
equation (48) can be written in the form

T A 45 T AN as T as
J J J—415 _
Eaik W+ 1+ Ecz'k hiy "+ Ebik gy =

T Ax i1 T Ax i1 T Ax i1
—__ J _ J _ - J
=5 ik hiy g+ [1 5 Cik ) hi 5 b By g

57
T s (T s (T A 7
Eaik YVicuk T +Ecik Vik +E ik Vielg =
T Ax i1 T Ax i1 T Ax i1
—_ _ J _ J _ J
=5 ik Vi1 k +[1 5 Cik)yz’,k > bie Vi1

T Ax C3x 4/ T Ax C3x C .
Jj—4/5 s j—4/5
E(aik +ta jui—l,k + 1“‘5 Cik +cik+7/_j Uig
ik
T Ax  C3x P4 T Ax  C3x .
j-45 _ b Jj-1
+E(bik +by J“m,k =73 Qi Ty Ui p T
T Ax C3x CS i1 T Ax C3x i1
J J
+[1_E(cik +ey+ 2 Ui = by +by |uisy k>
ik
T Ax D4x i_4/5 T Ax Déx i_4/5
J J
E[aik +aikjvi—l,k + I+ 5 Cit, ¥Ciy | |Vie T
Ax
T Ax Déx i_4/5 T Ax Dé4x i1
J _ J
+E(bik +bikjvi+1,k =75 @y Fy Vit
Ax
T Ax Dé4x i1 T Ax Dé4x i1
J J
J{l _E(Cik i | | Vik ey by +by Viprx -

Here k=0,n, , and for each k we get a system of

(38)

linear algebraic equations of (n, xn,) order relative to

j—4/5"x =45\ j—4/5\"x
{hi,k Vik  fi_ ik f._p

unknowns o
i=

. n
{V{ ;4/5} xl with tridiagonal matrix. there is an effective
. i

method of solution for solving such systems - the sweep
method [12].

For the second pitch, we also deal with a system of
algebraic equations with a three-diagonal matrix, which is
solved by the sweep method relative to unknown

i-3/5\" i-3/5\" i-3/5\"y i—3/5\"y
h! } { / } {u:’ } v/ for
{ i,k £=0 > }/l,k k=0 > i,k k=0 > ik k=0

all i=1,n,
Ay Ay . Ay .

T -3/5 T -3/5 T -3/5

el J L J ‘ J _

5 ap b+ 1+ 5 Ci |hiTT + 5 by Wiy =

Ay Ay , Ay
T —4/5 T -4/5 T —4/5
_ J _ J _ J
2aik hi,k—l +1 5 Cik )y by, hi,k+1 >

Ay Ay . Ay
T -3/5 T -3/5 T -3/5
J J J _
Eaik Vikar * 1+Ecik Vit Ebik Vikr =

Ay Ay Ay
4 i—4/5 T i-4/5 T i—4/5
_ J J J
__Eaik Yik—1 +(1_Ecik)7/i,k — 5 ik Vik+1 -
Ay C3y . Ay C3y .
T _ T _
5[% +ay \Jui{k3is + [1 + E(cik +Cy D”i],k3/5 +
Ay C3y Ay C3y
T i-3/5 T j—4/5
J __° J
+5[bik +by j”i,lm =73 Qi Ty Uiy +
Ay C3y Ay C3y
T i-4/5 T j—4/5
J J
4{1 _E(Cik +Cy Dui,k —3 by +by U7y
Ay D4y . Ay Ddy (O . (60)
T j-3/5 T s j=3/5
=| ay +ay | Vi 1+ =] e +Cik+_j Vig o+
2 2 Vik

Ay D4y . Ay D4y .
7 -3/5 2 —4/5
J __ J
+2(bik +bikjvi+l,k =3 Qg +ay |Vip| +

T Ay D4y C

+ 1==| ¢ +cp+—=
J

2 Vik

s TP s
J— _ - J—
Vik 5 by +by | Vi gt -
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The third and fourth fractional pitches
The third time pitch is connected with equation (50),
which is equivalent to the system of equations:

j—2/5 i—3/5 j—2/5 j—3/5
H’ =H’ , v/ =y’ ,

G5 +125U_/—2/5 _ G5 —ZZC):U-/‘3/5,
2 2
(61)

Ui L L yis LR GiYs -
2 2

—y/3s _ZijUj—?’/S _ngj—s/s.
2 2

This system of matrix equations has a solution,
which can be represented accurate within members of
order in the form:

HIYS = i35 yie2s s,

GIY5 — i35 _T2C)$Uj—3/5’ (62)

Ui i _TjHj—ys _T}‘;‘,Gj—ys'
The fourth pitch corresponds to the equation (51):
HIVS = gYs gils i,

G5 JrZng—l/s — G5 _ngj—Z/S’
2 2
y =15 +£ZH-H/5 +£4§Gj—1/5 _ (63)
2 2

_yJs _121{1‘—2/5 _ZEGJ—Z/S‘
2 2

and has the corresponding solution:
HIVS Z ppie2s  ils _gyias

GIVS — GiYs _ rg yi-Ys, (64)
yaVs _yi-2s _TZH_]'—NS —r%G-"*Z/S
From the relations (62, 64) it can be seen that for
these two pitches finding of a solution add up to
operations of multiplication of matrices and vectors.
The fifth pitch add up to calculate the recurrence
relation (52), and the subsequent pitches correspond to 1-
4 pitches, which are carried out in a reverse order.

Choice of the phenomenal coefficient of Shezy

There are no experimental data concerning of
determination of the Shezy coefficient C; in the
literature, which is concerned to the dynamics of flows.
Let’s consider the one-dimensional steady-state Kuette
motion of a viscous fluid within the channel of a width £
(Fig. 3) [19, 20] that we have an idea of the order of this
magnitude.

1

Fig.3. One-dimensional motion of a viscous liquid inside
the channel
Let u=u(y) is x component of velocity. The

velocity profile is parabolic:

A
u=7p y(hy),

where: Ap = p, — p, is the pressure difference at the
distance / between the points x;,x, .

The average fluid velocity u, in the channel is equal:
h 2
1 Aph
u, =—|u(y)dy=—"—.
s h{ (»)dy =

Shearing stress 7' on a solid wall are conditioned by
hydraulic resistance:

Cug,ie.
A Ap h?
sza—u +8_u E,uﬂzCSuSECS ph.
Wlyoo Wl ! 6l
From where follows:
c =124
h

Thus, the Shezy coefficient has the same order as the
coefficient of dynamic shear viscosity z .

CONCLUSION

A numerical solution of the spatial motion problem
of a loose mixture in a vibrating tray is obtained by finite-
difference method.
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UYNCJIEHHOE PEIIEHUE 3AJAYHN
ITPOCTPAHCTBEHHOI'O
JABVWXEHM A CBIITYYEU CMECHU B BUBPOJIOTKE

M. Iusens

AHHOTanudA. B crarbe MOIy4yeHO YKCIEHHOE pElIeHHE
3a/1a4yl IPOCTPAHCTBEHHOTO JIBUXKEHUS ChIy4eil cMecu B
BHOPOJIOTKE KOHEYHOPA3HOCTHBIM METOIOM.

CyTb MeTo1a 3aKJII04aeTcs B TOM, YTO
nuddepeHraIbHbIe ONIepaTophl M0 MPOCTPAHCTBECHHBIM
[IEPEMEHHBIM 3aMEHSIIOTCS KOHEYHOPa3HOCTHBIMHU
onepaTropamu B y371ax CETKH, npu 3TOM
KOHEUHOPA3HOCTHBIM omepaTtop MJOMKEH KaK MOXHO
TOYHEE aANIpPOKCUMHUPOBATH nuddepeHInaTbHBIH.

Hcnonp3oBaHel KOHEYHO-Pa3HOCTHBIE
HMEIOIINE BTOPOH MOPSAIOK TOYHOCTH.
I'pannunsle YCIIOBHS BHOCSAT HM3MEHEHHS B
KO3 PHUIHIEHTHI Pa3HOCTHHIX orepaTtopos. [lomaraem, aTo
OTH H3MEHEHHs YK€ YYHUTHIBAIOTCS B ypPaBHEHUSX,
MPECTAaBIAIOMNX  co00if  cucTeMy  OOBIKHOBEHHBIX
i depeHInanTbHbIX ypaBHEHUH OTHOCHUTEIIBHO
BEKTOpHOH mepeMmeHHOH. K crmaraembIM ypaBHEHHH
OTHECEHbl TIJIaBHBIC WIEHbl ypPaBHEHUH JUHAMUKH,
BIMSIONIME Ha OBICTPOTY CXOJMMOCTH HPHUOIMKEHHBIX
pemieHnit k TouyHOMYy. K mpaBbIM YacTIM OTHECEHBI
claraeMsele, cojJiepiKallue CMellaHHble NpOU3BOJHBIE. B
TaKOM BHUJE YPABHEHUS IOATOTOBIEHBI K MPUMEHEHHIO
Pa3sHOCTHOTO METOJA PACIEILICHHS.

JUii  moiayd4eHMs CTallMOHAPHOTO pEIICHUs 3a1add
HCIONB30BaHbl  CIEAYIOIIME  TIOJNIOKEHHUS:  HaJIW4He
JVUCCHUINIAIMM B 3a7ade (CWJI BHYTPEHHETO M BHEIIHETO
TPeHHs) TPUBOAWUT K TOMY, YTO TIPH HEW3MEHHBIX
BHEIIHUX YCJIOBUAX (TPaHUUYHBIE YCIOBHUS HE 3aBUCAT OT
BPEMEHH) TMOTOK ChIydyell CMECH CO BpEMEHEM
CTa0WIM3NPYETCS] M HE 3aBUCHMO OT Ha4aJIbHBIX YCJIOBUIl
IPUXOAUT B CBOE CTallMOHapHOEe cocTosHue. IloaTomy
nanee (GoOpMyJNUpyeTcs HaudaJlbHO-KpaeBas 3ajada c
HEU3MEHHBIMH FPAaHUYHBIMU YCIOBUSAMH, & CTALlMOHAPHOE
pelIeHre paccMaTpUBAETCsl KaK ACHMITOTHYECKOE.
MHOTOMEpHOCTh 3aJaudl TPHBOAWUT K HEOOXOAMMOCTH
pELICHUS] CHCTEM, COJCPXKAIUX  OONBIIOE  YHCIIO
ypaBHeHHHA. K TOMy € mNpH pelleHHH MOCIEeIHUX
BO3MOKHO BO3HUKHOBEHHUE YHCIEHHON HEYCTONYHMBOCTH
anroputMa. OOMH M3 croco0OB pELICHUs] ypaBHEHUH
3aKiroyaeTcss B mepexone oT  auddepeHnnanbHbIX
ypaBHEHHH K CHUCTeMe aireOpanvecKux ypaBHEHHH
MOCPEACTBOM 3aMeHBI omepaTopa JuddepeHIIMPOBAHUS
II0 BPEMEHU KOHEYHOPA3HOCTHbIM. B panbHelimem
IpHUMEHEHa HesIBHAs pa3HOCTHas cxeMa,
cooTBeTcTByromass ~ Metony  Kpanka-Hukxoncoma ¢
YIBOEHHBIM MIaroM II0 BpPEMEHH, MMeEIoIas BTOPOH

OIIepaTopBlI,

OpAA0K TOYHOCTH u 1o BPEMCHHA n Io
IPOCTPAHCTBECHHBIM IEPEMCHHBIM.

KiaroueBble cioBa: MIPOCTPAHCTBEHHOC  JIBMIKCHUC,
ChbllTy4as CMECH, KOHG‘IHOpaSHOCTHHﬁ METOM,

i depeHnnanbHbIe ONepaTophl.






