Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 1 |
Tytuł artykułu

Identification of quantitative trait loci for cadmium tolerance and accumulation in wheat

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch × Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd tolerance indexes (TI) were calculated for plants under Cd stress relative to control conditions. Cd concentrations in both root and shoot were determined and the amount of Cd accumulation and translocation calculated. The phenotypic variation of the above traits showed a continuous distribution pattern among the RILs. Twenty-six QTLs were detected, (16 of which were designated for the traits under the control and Cd stress, 8 for Cd tolerance and 2 for root Cd accumulation). These 26 QTLs individually could explain 7.97–60.16% of the phenotypic variation. Fourteen QTLs were positive (with the additive effects coming from Ch) while the remaining 12 QTLs were negative (with the additive effects contributed by Sh). No QTL were detected in the same region on the chromosomes of wheat. The results indicated that genetic mechanisms controlling the traits of Cd tolerance were independent from each other. Therefore, in this study, the properties of Cd tolerance and accumulation showed to be independent traits in wheat.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
34
Numer
1
Opis fizyczny
p.191-202,fig.,ref.
Twórcy
autor
  • Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, China
autor
  • Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, China
autor
  • College of Agriculture, Nanjing Agricultural University, No.1 Weigang Road, 210095 Nanjing, China
  • National Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
  • Department of Genetics and Biotechnology, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Danmark
autor
  • Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, China
autor
  • Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture of Jiangsu Province, Nanjing Agricultural University, Nanjing, China
Bibliografia
  • Bálint AF, Szira F, Röder MS, Galiba G, Börner A (2009) Mapping of loci affecting copper tolerance in wheat—the possible impact of the vernalization gene Vrn-A1. Environ Exp Bot 65:369–375
  • Berger JO (1985) Statistical decision theory and bayesian analysis, 2nd edn. Springer, New York
  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18
  • Cai S, Bai H, Zhang D (2008) Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theor Appl Genet 117:49–56
  • Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J Exp Bot 55:2571–2579
  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 37:297–303
  • Ci D, Jiang D, Dai T, Jing Q, Cao W (2009) Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere 77:1620–1625
  • Ci D, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010a) Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiol Plant 32:365–373
  • Ci D, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010b) Genetic variance in cadmium tolerance and accumulation in wheat materials differing in ploidy and genome at seedling stage. J Agron Crop Sci 196:302–310
  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065
  • Deniau A, Pieper B, Bookum W, Lindhout P, Aarts M, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Genet 113:907–920
  • Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666
  • Dufey I, Hakizimana P, Draye X, Lutts S, Bertin P (2009) QTL mapping for biomass and physiological parameters linked to resistance mechanisms to ferrous iron toxicity in rice. Euphytica 167:143–160
  • Ekmekci Y, Tanyolac D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611
  • Escarre J, Lefebvre C, Gruber W, Leblanc M, Lepart J, Riviere Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437
  • Guo TR, Zhang GP, Zhang YH (2007) Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf B 57:182–188
  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199
  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278
  • Li P, Cai R, Gao H, Peng T, Wang Z (2007a) Partitioning of excitation energy in two wheat cultivars with different grain protein contents grown under three nitrogen applications in the field. Physiol Plant 129:822–829
  • Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L (2007b) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178
  • Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98
  • Liu X, Zhang S, Shan X, Zhu Y (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301
  • Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559
  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194
  • Oncel I, Keles Y, Ustun AS (2000) Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut 107:315–320
  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545
  • Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215
  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130
  • Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D (2008) Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis waterlogging. Photosynthetica 46:21–27
  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27: 205–233
  • Tezuka K, Miyadate H, Katou K, Kodama I, Matsumoto S, Kawamoto T, Masaki S, Satoh H, Yamaguchi M, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2010) A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet 12:1175–1182
  • Ueno D, Koyama E, Kono I, Ando T, Yano M, Ma JF (2009a) Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant Cell Physiol 50:2223–2233
  • Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009b) A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol 182:644–653
  • Verma P, George KV, Singh HV, Singh RN (2007) Modeling cadmium accumulation in radish, carrot, spinach and cabbage. Appl Math Model 31:1652–1661
  • Wagner GJ, Donald LS (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212
  • Wang DL, Zhu J, Li ZK (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264
  • Wangstrand H, Eriksson J, Oborn I (2007) Cadmium concentration in winter wheat as affected by nitrogen fertilization. Eur J Agron 26:209–214
  • Weinig C, Stinchcombe JR, Schmitt J (2003) QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments. Mol Ecol 12:1153–1163
  • Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp, halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674
  • Wu P, Hu B, Liao CY, Zhu JM, Wu YR, Senadhira D, Paterson AH (1998) Characterization of tissue tolerance to iron by molecular markers in different lines of rice. Plant Soil 203:217–226
  • Wu F, Zhang G, Dominy P, Wu H, Bachir DML (2007) Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. Chemosphere 70:83–92
  • Xue D, Chen M, Zhang G (2009) Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165:587–596
  • Zeng ZB, Sydney B, Jeffrey HM (2001) QTL mapping. In: Encyclopedia of genetics. Academic Press, New York, pp 1587–1593
  • Zha HG, Jiang RF, Zhao FJ, Vooijs R, Schat H, Barker JHA, McGrath SP (2004) Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytol 163:299–312
  • Zhang J, Zhu YG, Zeng DL, Cheng WD, Qian Q, Duan GL (2008) Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa). New Phytol 177:350–356
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-98f94714-d978-42f2-a199-96c4dd378e6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.