Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | 75 | 3 |
Tytuł artykułu

Fatty acid composition and antioxidant capacity of defatted, non-defatted and oils extracts of Quercus ilex fruit from Algeria

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background. The nutritional value and health-promoting properties cause the fruits (acorns) of Quercus ilex to have great potential for use in the food industry as functional ingredients and antioxidants source. Objective. In this study, the amount of total phenolic compounds, flavonoids in different extracts (defatted, non-defatted) and composition of fatty acids in the fruits oils of Quercus ilex were investigated. Besides, antioxidant activity was determined. Material and Methods. Fatty acids were extracted with n-hexane and determined by gas chromatography with mass spectrometry detection (GC-MS). Total phenolic and flavonoids contents in the extracts were measured spectrophotometrically and the antioxidant activities were tested by the DPPH (2,2-diphenyl-1-picrylhydrazyl), free radical scavenging assay, free radical-scavenging ABTS and total antioxidant capacity. Results. The amount of total phenolic and flavonoid compounds in the defatted Q. ilex were 634.36±27.41 mg GAE/g DW and 96.85±2.13 mg RE/g DW, respectively. Unsaturated fatty acids were detected in higher amounts than saturated fatty acids. The primary unsaturated fatty acids of the Quercus ilex oil were oleic acid (65.38%), 9,12-octadecadienoic acid (16.64%) and palmitic acid (12.81%). Besides, defatted Q. ilex extract showed remarkable DPPH and ABTS radical scavenging activity with IC50 values of 0.008±0.0008, 0.005±0.001 mg/ml respectively, while high total antioxidant capacity of the non-defatted extract with VCEAC value 0.13±0.006. Conclusions. Q. ilex oil contained high amounts of polyphenols, high essential fatty acids and antioxidant potential for producing specific health promoting antioxidants in food and pharmaceutical industry.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
75
Numer
3
Opis fizyczny
p.1-9,ref.
Twórcy
autor
  • Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat 03000, Algeria
autor
  • Laboratory of Biological and Agricultural Sciences (LBAS), Amar Telidji University, Laghouat 03000, Algeria
autor
  • Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, 60240 Tokat, Turkey
autor
  • Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, 60240 Tokat, Turkey
autor
  • Chemistry of Natural Product Department, Ministry of Education, Anbar Education Directorate, Iraq
autor
  • Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
autor
  • Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt
Bibliografia
  • 1. Bakchiche B, Gherib A, Bronze MR, Ghareeb MA. Identification, quantification, and antioxidant activity of hydroalcoholic extract of Artemisia campestris from Algeria. Turk J Pharm Sci. 2019;16(2):234-239. doi: 10.4274/tjps.galenos.2018.99267.
  • 2. Cheraif K, Bakchiche B, Gherib A, Bardaweel SK, Ayvaz MC, Flamini G, et al. Chemical composition, antioxidant, anti-tyrosinase, anti-cholinesterase and cytotoxic activities of essential oils of six Algerian plants. Molecules. 2020;25(7):1710. doi:10.3390/molecules25071710.
  • 3. Bakchiche B, Temizer İK, Güder A, Çelemli ÖG, Yegin SÇ, Bardaweel SK, et al. Ghareeb MA. Chemical composition and biological activities of honeybee products from Algeria. J Appl Biotechnol Rep. 2020;7(2):93-103. doi: 10.30491/JABR.2020.109498.
  • 4. Bakchiche B, Guenane H, Sahin B, Öztürk M, Ghareeb MA, Miguel MG. Fatty acid, mineral content and antioxidant activities of Algerian fat bee pollen. Nova Biotechnol Chim. 2020;19(2):208-215. doi: 10.36547/nbc.v19i2.738.
  • 5. Bireche M, Bakchiche B, Gherib A, Gil-Izquierdo A, Domínguez-Perles R, Ghareeb MA. Fatty acid and amino acid composition of Citrullus colocynthis seeds growing in Algeria. Egypt J Chem. 2021;64(8):4727-4737. doi: 10.21608/EJCHEM.2021.73414.3627.
  • 6. Bakchiche B, Gören AC, Aydoğmuş Z, Mataraci-Kara E, Ghareeb MA. Artemisia campestris and Artemisia herba-alba: LC-HRESI-MS profile alongside their antioxidant and antimicrobial evaluation. Acta Pharm Sci. 2022;60(2):131-152. doi: 10.23893/1307-2080.APS.6010.
  • 7. Kemal ME, Bakchiche B, Kemal M, Cheraif K, Kara Y, Bardaweel SK, et al. Six Algerian plants: Phenolic profile, antioxidant, antimicrobial activities associated with different simulated gastrointestinal digestion phases and antiproliferative properties. J Herb Med. 2023;38:100636. doi: 10.1016/j.hermed.2023.100636.
  • 8. Teggar N, Bakchiche B, Abdel-Aziz ME, Bardaweel SK, Ghareeb MA. Chemical composition and biological evaluation of Algerian propolis from six different regions. Jordan J Pharm Sci. 2023;16(2):184-197. doi:10.35516/jjps.v16i2.1319.
  • 9. Mohamed-Benkada M, Achira DY, Ghareeb MA. Assessment of antimicrobial activity and mycelium insights of Terfezia claveryi truffle harvested from Tindouf desert. J Appl Pharm Sci. 2024;14(02):161-173. doi: 10.7324/JAPS.2024.169988.
  • 10. Hoeche U, Kelly A, Noci F. Acorn: Staple food from the past or novel food for the future? An investigation into the desirability and acceptability of acorn flour products. Dublin Gastronomy Symposium. Dublin; 2014. p. 1-14.
  • 11. Bainbridge DA. Acorns as food: History, use, recipes, and bibliography [Internet]. Scotts Valley, CA: Sierra Nature Prints; 2006. Available from: https://www.academia.edu/3829415/Acorns_as_Food_Text_and_Bibliography.
  • 12. Rakić S, Petrović D, Tešević V, Simić M, Maletić R. Oak acorn, polyphenols and antioxidant activity in functional food. J Food Eng. 2006;74(3):416-423. doi: 10.1016/j.jfoodeng.2005.03.057.
  • 13. Cantos E, Espin J, Carlos-Lopez BC, Delahoz L, Ordonez JA, TomasBarberan FA. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free ranged Iberian pigs. J Agric Food Chem. 2003;51:6248-6255. doi: 10.1021/jf030216v.
  • 14. Kaul N, Devaraj S, Jialal I. α-Tocopherol and atherosclerosis. Evid Based Med. 2001;226:5-12. doi: 10.1177/153537020122600102.
  • 15. Karioti A, Bilia AR, Gabbiani C, Messori L, Skaltsa H. Proanthocyanidin glycosides from the leaves of Quercus ilex L. (Fagaceae). Tetrahedron Lett. 2009;50(16):1771-1776. doi: 10.1016/j.tetlet.2009.01.158.
  • 16. Ghareeb MA, Mohamed T, Saad AM, Refahy LA, Sobeh M, Wink M. HPLC-DAD-ESI-MS/MS analysis of fruits from Firmiana simplex (L.) and evaluation of their antioxidant and antigenotoxic properties. J Pharm Pharmacol. 2018;70:133-142. doi: 10.1111/jphp.12843.
  • 17. Ghareeb MA, Sobeh M, Rezq S, El-Shazly AM, Mahmoud MF, Wink M. HPLC-ESI-MS/MS profiling of polyphenolics of a leaf extract from Alpinia zerumbet (Zingiberaceae) and its anti-inflammatory, antinociceptive, and antipyretic activities in vivo. Molecules. 2018;23:3238. doi: 10.3390/molecules23123238.
  • 18. Sobeh M, Mahmoud MF, Hasan RA, Abdelfattah MAO, Sabry OM, Ghareeb MA, et al. Tannin-rich extracts from Lannea stuhlmannii and Lannea humilis (Anacardiaceae) exhibit hepatoprotective activities in vivo via enhancement of the anti-apoptotic protein Bcl-2. Sci Rep. 2018;8:9343. doi: 10.1038/s41598-018-27452-8.
  • 19. Al-Rousan WM, Ajo RY, Al-Ismail KM, Attlee A, Shaker RR, Osaili TM. Characterisation of acorn fruit oils extracted from selected Mediterranean Quercus species. Fats Oils. 2013;64(5):554-560. doi: 10.3989/gya.023313.
  • 20. Makhlouf FZ, Squeo G, Barkat M, Trani A, Caponio F. Antioxidant activity, tocopherols and polyphenols of acorn oil obtained from Quercus species grown in Algeria. Food Res Int. 2018;114:208-213. doi: 10.1016/j.foodres.2018.08.010.
  • 21. Lopes IM, Bernardo-Gil MG. Characterisation of acorn oils extracted by hexane and by supercritical carbon dioxide. Eur J Lipid Sci Technol. 2005;107(1):12-19. doi: 10.1002/ejlt.200401039.
  • 22. Górnaś P. Oak Quercus rubra L. and Quercus robur L. acorns as an unconventional source of gamma- and betatocopherol. Eur Food Res Technol. 2019;245(1):257-261.doi: 10.1007/s00217-018-3150-0.
  • 23. Rabhi F, Narváez-Rivas M, Tlili N, Boukhchina S, León-Camacho M. Sterol, aliphatic alcohol and tocopherol contents of Quercus ilex and Quercus suber from different regions. Ind Crops Prod. 2016;83:781-786. doi: 10.1016/j.indcrop.2015.11.020.
  • 24. Taib M, Bouyazza L, Lyoussi B. Acorn Oil: Chemistry and Functionality. J Food Qual. 2020;2020:8898370. doi: 10.1155/2020/8898370.
  • 25. Makhlouf FZ, Squeo G, Difonzo G, Faccia M, Pasqualone A, Summo C, et al. Effects of storage on the oxidative stability of acorn oils extracted from three different Quercus species. J Sci Food Agric. 2021;101(1):131-138. doi: 10.1002/jsfa.10623.
  • 26. Charef M, Yousfi M, Saidi M, Stocker P. Determination of the fatty acid composition of acorn (Quercus), Pistacia lentiscus seeds growing in Algeria. J Am Oil Chem Soc. 2008;85(10):921-924. doi: 10.1007/s11746-008-1283-1.
  • 27. Makhlouf FZ, Squeo G, Barkat M, Pasqualone A, Caponio F. Comparative study of total phenolic content and antioxidant properties of Quercus fruit: flour and oil. Nor Afr J Food Nutr Res. 2019;03(05):148-155.doi: 10.51745/najfnr.3.5.148-155.
  • 28. Kuhkheil A, Naghdi BH, Mehrafarin A, Abdossi, V. Phytochemical and morpho-physiological variations in sea buckthorn (Hippophae rhamnoides L.) populations of Taleghan region in Iran. J Med Plants. 2020;19(76):21-35. doi: 10.29252/jmp.19.76.21.
  • 29. Shengwei S, Jian H, Meijuan L, Guangling Y, Xuguang Z. A great concern regarding the authenticity identification and quality control of Chinese propolis and Brazilian green propolis. J Food Nutr Res. 2019;7(10):725-735. doi: 10.12691/jfnr-7-10-6.
  • 30. Apriliyanti MW, Ardiyansyah M, Febrianti W, Arum P, Jayus SA. Effect of time and temperature on vitamin C contents and antioxidant activity in the hot water extraction of melinjo peels. In vitro biological evaluation and phytochemical contents of three Centaurea L. species growing from Eastern Anatolia in Turkey. J Agric Nat. 2020;23(1):148-156. doi: 10.1088/1755-1315/980/1/012045.
  • 31. Li Y, Jianyan C, Lili C, Liang L, Fang W, Zhengping L, et al. Characterization of a novel polysaccharide isolated from Phyllanthus emblica L. and analysis of its antioxidant activities. J Food Sci Technol. 2018;55(7):2758-2764. doi: 10.1007/s13197-018-3199-6.
  • 32. Kandasamy S, Cengiz S, Saliha SS, Rabia BS, Wang M-H. Phytochemical composition, antioxidant, and enzyme inhibition activities of methanolic extracts of two endemic Onosma species. Plants. 2021;10:1373. doi: 10.3390/plants10071373.
  • 33. Berber A , Zengin G , Aktumsek A , Aydin Sanda M, Uysal T. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey. Rev Biol Trop. 2014;62(1):337-46. doi: 10.15517/rbt.v62i1.7887.
  • 34. Bouafia M, Benarfa A, Gourine N, Yousfi M. Seasonal variation of fatty acid composition, tocopherol content and lipid antioxidant activity of extracts from Centaurea sp. Food Bioscience. 2020;37:100728. doi: 10.1016/j.fbio.2020.100728.
  • 35. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999;269:337-341. doi: 10.1006/ABIO.1999.4019 .
  • 36. Zarroug Y, Sriti J, Boulares M, Mejri J, Sfayhi D, Hamdaoui G, et al. Chemical composition and sterol profile of Tunisian Quercus ilex oil. La Rivista Italiana delle Sostanze Grasse. 2021;98:145-153.
  • 37. Custódio L, Patarra J, Neng NR, Nogueira JMF, Romano A. Extracts from Quercus sp. acorns acts neuroprotective in vitro by inhibiting cholinesterase and protecting SHSY5Y cells from hydrogen mediated cytotoxicity. Ind Crops Prod. 2013;45:114. doi: 10.1016/j.indcrop.2012.12.011.
  • 38. Masmoudi M, Besbes S, Bouaziz MA, Khlifi M, Yahyaoui D, Attia H. Optimization of acorn (Quercus suber L.) muffin formulations: Effect of using hydrocolloids by a mixture design approach. Food Chem. 2020;328:127082. doi: 10.1016/j.foodchem.2020.127082.
  • 39. Taib M, Damiri F, Rezzak Y, Berrada M, Bouyazza L. Chemical composition, nutritional, and antioxidant activity of two Quercus species acorns growing in Morocco. Lett Appl Nano BioSci. 2024;13(1):15. doi: 10.33263/LIANBS131.020.
  • 40. Sousa V, Ferreira JPA, Miranda I, Quilhó T, Pereira H. Quercus rotundifolia bark as a source of polar extracts: Structural and chemical characterization. Forests. 2021;12:1160. doi: 10.3390/f12091160.
  • 41. Berraaouan A, Ziyyat A, Mekhfi H, Sindic M, Fauconnier M-L, Legssyer A, et al. Chemical Composition of Cactus Pear Seed Oil: phenolics identification and antioxidant activity. J Pharmacopuncture. 2022;25(2):121-129. doi: 10.3831/KPI.2022.25.2.121.
  • 42. Santos S, Pinto PR, Silvestre AJD, Neto CP. Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L. Ind Crops Prod. 2010;31(3):521-526. doi: 10.1016/j.indcrop.2010.02.001.
  • 43. Servili M, Esposto S, Fabiani R, Urbani S, Taticchi A, Mariucci F, et al. Phenolic compounds in olive oil: antioxidant, health and Organoleptic activities according to their chemical structure. Inflammopharmacology. 2009;17(2):76-84. doi: 10.1007/s10787-008-8014-y.
  • 44. Turkmen N, Velioglun YS, Sari F, Polat G. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules. 2007;12(3):484-96. doi: 10.3390/12030484.
  • 45. Gupta K, Maurya S, Agarwal S, Kushwaha A, Kumar R Antioxidant assessment of extracts obtained through hot extraction process. Cell Mol Biol. 2016;62:129. doi: 10.4172/1165-158X.1000129.
  • 46. Jan S, Khan MR, Rashid U, Bokhari J. Assessment of antioxidant potential, total phenolics and favonoids of diferent solvent fractions of Monotheca buxifolia fruit. Osong Public Health Res Perspect. 2013; 4:246-254. doi: 10.1016/j.phrp.2013.09.003.
  • 47. Sadeghi H, Talaii AR. Impact of environmental conditions on fatty acids combination of olive oil in Iranian olive CV, Zard. Acta Hortic. 2000;586:579-581. doi: 10.17660/ActaHortic.2002.586.121.
  • 48. Uzun B, Ulger S, Cagirgan IM. Comparison of determinate and indeterminate types of sesame for oil content and fatty acid composition. Turk J Agric For. 2002;26:269-274.
  • 49. Tulukcu E. A comparative study on fatty acid composition of black cumin obtained from different regions of Turkey, Iran and Syria. Afr J Agric Res. 2011;6(4):892-895. doi: 10.5897/AJAR10.286.
  • 50. Al-Rousan WM, Ajo RY, Al-Ismail KM, Attlee A, Shaker RR, Osaili TM. Characterization of acorn fruit oils extracted from selected Mediterranean Quercus species. Grasas y Aceites. 2013;64(5);554-560. doi: 10.3989/gya.023313.
  • 51. Msaada K, Hosni K, Ben Taarit M, Chahed T, Hammami M, Marzouk B. Changes in fatty acid composition of coriander (Coriandrum sativum L.) fruit during maturation. Ind Crops Prod. 2009;29(2-3):269-274. doi: 10.1016/j.indcrop.2008.05.011.
  • 52. Laribi B, Kouki K, Sahli A, Mougou A, Marzouk B. Essential oil and fatty acid composition of a Tunisian caraway (Carum carvi L.) seed ecotypes cultivated under water deficit. Adv Environ Biol. 2011;5(2):257-264.
  • 53. Ryan E, Galvin K, O’Connor TP, Maguire AR. Phytosterol, squalene, tocopheral content and fatty acid profile of selected seeds, grains, and legumes. Plant Food Hum Nutr. 2007;62(3):85-91. doi: 10.1007/s11130-007-0046-8.
  • 54. Riley T, Petersen K, Kris-Etherton P. Health aspects of high-oleic oils. High Oleic Oils. 2022;201-243. doi: 10.1016/B978-0-12-822912-5.00002-2.
  • 55. Karabas H. Biodiesel production from crude acorn (Quercus frainetto L.) kernel oil: An optimisation process using the Taguchi method. Renew Energy. 2013;53:384-388. doi: 10.1016/j.renene.2012.12.002 .
  • 56. Lassoued R, Abderrabba M, Mejri J. Comparative chemical composition of two Quercus species seeds growing in Tunisia. S Afr J Bot. 2021;146(10):71-76. doi: 10.1016/j.sajb.2021.10.003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-96e17475-2224-4c33-839a-17a1ffdc4a28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.