Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |
Tytuł artykułu

Applying an artificial neural network (ANN) to assess soil salinity and temperature variability in agricultural areas of a mountain catchment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spatial analysis is currently a popular research tool, particularly in studies that focus on soil properties, and it is important for a comprehensive presentation of results by means of spatial statistics techniques. Spatial autocorrelation determines a degree of relationship between variables for two specific spatial units (locations). This relationship is reflected by spatial dependence of investigated soil properties. Moran’s I was used as a measure of spatial autocorrelation. Positive spatial autocorrelation was determined for soil salinity (electrical conductivity) and temperature. Thus, the aim of the study was to identify the factors affecting spatial correlation of electrical conductivity (EC) and temperature in farmland and forest-covered areas. A model of artificial neural network was based on salinity, as salinity reduces the amount of nutrients and soil temperature, thus inhibiting plant root growth. Our study revealed that the most effective parameters determining soil temperature were EC and moisture content. The best results in the EC model were achieved for soil moisture content, temperature, and soil texture. Both soil parameters were impacted by catchment land use. Spatial analysis of soil properties and identification of factors affecting their diversity may be helpful in determining proper land use – particularly of sustainable agricultural practices in mountain areas.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
26
Numer
6
Opis fizyczny
p.2545-2554,fig.,ref.
Twórcy
autor
  • Department of Land Reclamation and Environmental Development, University of Agriculture, Mickiewicza 24/28, 30-059 Krakow, Poland
  • Department of Biometry and Forest Productivity, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425 Krakow, Poland
autor
  • Department of Sanitary Engineering and Water Management, University of Agriculture, Mickiewicza 24/28, 30-059 Krakow, Poland
autor
  • Department of Land Reclamation and Environmental Development, University of Agriculture, Mickiewicza 24/28, 30-059 Krakow, Poland
autor
  • Department of Land Reclamation and Environmental Development, University of Agriculture, Mickiewicza 24/28, 30-059 Krakow, Poland
  • Institute of Structural Mechanics, Faculty of Civil Engineering, Cracow University of Technology, Warszawska Street 24, 31-155 Krakow, Poland
Bibliografia
  • 1. HALECKI W., GĄSIOREK M., GAMBUŚ F., ABRAM R. The potential of hydrated and dehydrated sewage sludge discharges from soil reclamation appliances. Fresenius Environmental Bulletin, 25 (6), 1935, 2016.
  • 2. HANI A., PAZIRA E., MANSHOURI M., BABAIE KAFAKY S., GHAHROUDI TALI M. Spatial distribution and mapping of risk elements pollution in agricultural soils of southern Tehran, Iran. Plant Soil Environment, 56, 288, 2010.
  • 3. USOWICZ B., HAJNOS M. SOKOŁOWSKA, Z. JÓZEFACIUK G. BOWANKO G. KOSSOWSKI J., USOWICZ J. Variability of soil characteristics in the field scale and Villages. Annals of Soil Science, 1, 237, 2004.
  • 4. DUFFKOVÁ R., MACUROVÁ H. Soil biological quantity and quality parameters of grasslands in various landscape zones. Plant Soil Environment, 57, 577, 2011.
  • 5. WEIDORF D. C., ZHU Y., Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20, 185, 2010.
  • 6. KROULIK M., KUMALA F., MIMRA M., PRASEK V. Possibilities for determination of interdependence between soil properties and yield. Ag. Eng. Leuven 2004. Book of abstracts, 80, 2004.
  • 7. SCHUTTE B., KUTZBACH H. D. Tillage draught force as information source for soil variability. Ag. Eng. Leuven 2004. Book of abstracts, 54, 2004.
  • 8. WYSZKOWSKA J., BOROS E., KUCHARSKI J. Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environment, 53, 544, 2007.
  • 9. WANG Y., Q., SHAO M.A. Spatial variability of physical properties in a region of the Loess Plateau of PR China subject to wind and water erosion. Land Degradation and Development, 24 (3), 296, 2013.
  • 10. ADHIKARI P., SHUKLA M.K., MEXAL J. Spatial variability of electrical conductivity of desert soil irrigated with treated wastewater: implications for irrigation management. Applied and Environmental Soil Sciences, 2011, 1, 2011.
  • 11. BOROWIK A., WYSZKOWSKA J. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environment, 6, 250, 2016.
  • 12. USOWICZ B., REJMAN J. Spatial distribution of topsoil water content along a loess hillslope transect. Acta Agrophysica, 35, 201, 2000.
  • 13. BASHA G., OUARDA T., MARPU P.R. Long-term projections of temperature, precipitation and soil moisture using non-stationary oscillation processes over the UAE region. International Journal Climatology, 35, 4606, 2015.
  • 14. LEHNART M. Factors affecting soil temperature as limits of spatial interpretation and simulation of soil temperature. AUPO Geographica, 45, 5, 2015.
  • 15. IMRAN M., ASHRAF A., REHMAN A.U. Soil Electric Conductivity using Bayesian Kriging - A case study from Qasur, Pakistan. Journal of the Geological Society of India 88, 711, 2016.
  • 16. MOKARRAM M., SATHYAMOORTHY D. Investigation of the relationship between landform classes and electrical conductivity (EC) of water and soil using a fuzzy model in a GIS environment. Solid Earth, 7, 873, 2016.
  • 17. CORWIN D. L., LESCH, S. M. Characterizing soil spatial variability with apparent soil electrical conductivity I. Survey protocols. Comput. Electron. Agr., 46,103, 2005.
  • 18. WANG LI., ZHAO Q., ZHANG Y., ZHOU Q. In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy. Sensor, 16, 1, 2016.
  • 19. HILLEL D. The soil in the environment. Publ. PWN, 386, Poland, 2012.
  • 20. MOCEK A., DRZYMAŁA S. Genesis, analysis and classification of soils. Publ. UP Poznan, 418, Poland, 2010.
  • 21. LAI R., ARCA P., LAGOMARSINO A., CAPPAI C., SEDDEAIU G., DEMURTAS C. E., ROGGERO P. P. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena, 151, 202, 2017.
  • 22. RYCZEK M. Forecasting the intensity of suspended sediment transport in small mountain streams of the Western Carpathians using physiographic catchment. Publ. Univeristy of Agriculture, Poland, 2011.
  • 23. RYCZEK M., BOROŃ K., KLATKA S., KRUK E. Use of GIS technics for evaluation of water erosion threat on example of the Mątny river basin in the Beskid Wyspowy. Scientific Journal of Wrocław University of Environmental and Life Sciences, 576, 175, 2010.
  • 24. HALECKI W., MŁYŃSKI D., RYCZEK M., KRUK E., LIS J. Spatial variability of soil moisture and bulk density in the mountainous catchment of the Mątny river located in the Gorce. Episteme, 30, 347, 2016 [In Polish].
  • 25. MUCHA J. Geostatistical methods in documenting deposits. Script. Publ. AGH, 194, Poland, 1994.
  • 26. KRUSKAL W. H., WALLIS W. A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc., 47, 583, 1952.
  • 27. OLUSANYA E., OLUBUSOYE E. O., OKUNLOLA O. A., KORTER O. G. Estimating Bias of Omitting Spatial Effect in Spatial Autoregressive (SAR) Model. International Journal of Statistics and Applications, 5, 150, 2015.
  • 28. RANGEL T.F.L. V. B, DINIZ-FILHO J.A.F., BINI L.M. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 46, 2010.
  • 29. MZUKU M., KHOSLA R., REICH R., INMAN D., SMITH F., MCDONALD L. Spatial variability of measured soil properties across site-specific management Zones. Soil Sci. Soc. Am. J., 69, 1572, 2005.
  • 30. KILIC K., KILIC S., KOCYIGIT R. Assessment of spatial variability of soil properties in areas under different land use. Bulg. J. Agric. Sci., 5, 722, 2012.
  • 31. NAYANAKA V.G.D., VITHARANA W.A.U., MAPA R.B. Geostatistical analysis of soil properties to support spatial sampling in a paddy growing Alfisol. Trop. Agric. Res. 22, 34, 2010.
  • 32. MOLIN P.J., FAULIN G.C. Spatial and temporal variability of soil electrical conductivity related to soil moisture. Sci. Agr., 1, 1, 2013.
  • 33. WALTER C., MCBRATNEY A.B., DOUAOUI A., MINASNY B. Spatial prediction of topsoil salinity in the Chelif Valley. Algeria. using local ordinary kriging with local variograms versus whole-area variogram. Aust. J. Soil Res, 39, 259, 2001.
  • 34. BRULAND G.R., RICHARDSON C.J., WHALEN S.C. Spatial variability of denitrification potential and related soil properties in created restored and paired natural wetlands. Wetlands, 4, 1042, 2006.
  • 35. DUGUMA L.A., HARGER H., SIEGHARDT M. Effects of land use types on soil chemical properties in smallholder farmers of central highland Ethiopia. Ecology, 1, 1, 2010.
  • 36. KIFLU A., BEYENE M. Effects of different land use systems on selected soil properties in South Ethiopia. J. Soil Sci. Environ. Manage, 4, 100, 2013.
  • 37. GRUBA P., SOCHA J., BŁOŃSKA E., LASOTA J. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland. Science of The Total Environment, 521-522, 90, 2015.
  • 38. SUNG E.C., HYUNG C.P. Effect of spatial variability of cross-correlated soil properties on bearing capacity of strip footing. Numerical and Analytical Methods in Geomechanics, 34, 1, 2010.
  • 39. POGGIO L., GIMONA A., BREWER M.J. Regional scale mapping of soil properties and their uncertainty with a large number of satellite-derived covariates. Geoderma, 209-210, 1, 2013.
  • 40. JANGID K., WILLIAMS M.A., FRANZLUEBBERS A.J., SCHMIDT T.M., COLEMAN D.C., WHITMAN W.B. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology and Biochemistry, 43, 2184, 2011.
  • 41. JORDAN A., ZAVALA L.M., GIL J. Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain. Catena, 81, 77, 2010.
  • 42. LU A., WANG J., QIN X., WANG K., HAN P., ZHANG S. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of The Total Environment, 425, 66, 2012.
  • 43. ZHAO X., WU P., GAO X., PERSAUD N. Soil Quality Indicators in Relation to Land Use and Topography in a Small Catchment on the Loess Plateau of China, Land Degradation & Development, 26, 54, 2015.
  • 44. YU Y., WEI W., CHEN L.D., JIA F.Y., YANG L., ZHANG, H.D., FENG T.J. Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China, Solid Earth, 6, 595, 2015.
  • 45. LAISKHANOV U.S., OTAROV A., SAVIN Y.I., TANIRBERGENOV I.S., MAMUTOV U.Z., DUISEKOV N.S., ZHOGOLEV A. Dynamics of Soil Salinity in Irrigation Areas in South Kazakhstan. The Polish Journal of Environmental Studies, 25, 2469, 2016.
  • 46. AZADI S., KARIMI-JASHNI A. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran. Waste Management, 48, 14, 2016.
  • 47. DEMIR S., KARADENIZ A, DEMIR M.N. Using Steepness Coefficient to Improve Artificial Neural Network Performance for Environmental Modeling. The Polish Journal of Environmental Studies, 25 (4), 1467, 2016.
  • 48. YANG J., GONG W., SHI S., DU L., SUN J., SONG S.L. Estimation of nitrogen content based on fluorescence spectrum and principal component analysis in paddy rice. Plant Soil Environment, 62,178, 2016.
  • 49. MATHUR M., SUNDARAMOORTHY S. Spatial Autocorrelation and its Relationships with Community Dynamics, Soil and Site quality factors: A study from Arid desert with Different Magnitudes of Resource Pulses. International Journal of Plant Research 29, 41, 2016.
  • 50. MORRIS E.S, THAKAR V., GRIFFITH D.A. Respondent-Driven Sampling and Spatial Autocorrelation. Advances in Geocomputation, 22, 241, 2016.
  • 51. LI W., ZHU C., WANG H., XU B. Multi-scale spatial autocorrelation analysis of cultivated land quality in Zhejiang province. Transactions of the Chinese Society of Agricultural Engineering, 32, 239, 2016.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-96a3ac32-1737-4c4d-a302-d7f689f5b9e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.