Warianty tytułu
Języki publikacji
Abstrakty
In a field experiment, processing tomato plants inoculated with arbuscular mycorrhizae (AM) and non-inoculated (Control) were supplied with three levels of watering. The AM inoculation significantly increased tomato root colonization regardless of the water supply levels. Under water deficit conditions, AM inoculation significantly increased the biomass production (from 1,189 to 2,062 g plant⁻¹). AM inoculation increased the phosphorus uptake in water deficit supply (from 0.5 to 1.3 g plant⁻¹) and in optimum water supply (from 0.3 to 0.6 g plant⁻¹). Photosynthesis was not affected by irrigation, but mycorrhizal inoculation enhanced the efficiency of photosystem II at all water levels. Inoculated plants accumulated less proline, potassium, and magnesium in shoots in response to water stress. Less organic and inorganic solutes in shoots of inoculated plants were accompanied by higher water use efficiency, better stomatal conductance, and higher leaf water potential. In conclusion, AM inoculation enabled host plants to alleviate moderate water stress, modulating the physiological status of the plants for better water exploitation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.1949-1958,fig.,ref.
Twórcy
autor
- Department of Ornamental Plants, Bakrajo Technical Institute, Sulaimani Polytechnic University, Sulaymaniyah, Kurdistan Region, Iraq
- Institute of Horticulture, Szent Istvan University, Godollo, Hungary
autor
- Institute of Horticulture, Szent Istvan University, Godollo, Hungary
autor
- Institute of Horticulture, Szent Istvan University, Godollo, Hungary
autor
- Institute of Genetics, Microbiology and Biotechnology, , Szent Istvan University, Godollo, Hungary
Bibliografia
- 1. World processing tomato Council. Available online: http://www.wptc.to/pdf/releases/WPTC%20World%20 Production%20estimate.pdf (accessed on 22. 04. 2017).
- 2. TRENBERTH K.E., DAI A., VAN DER SCHRIER G., JONES P.D., BARICHIVICH J., BRIFFA K.R., SHEFFIELD J. Global warming and changes in drought. Nat. Clim. Chang. 4 (1), 17, 2014.
- 3. FAROOQ M., WAHID A., KOBAYASHI N., FUJITA D., BASRA S.M.A. Plant drought stress: effects, mechanisms and management. Agron Sustain. Dev. 29 (1), 185, 2009.
- 4. PATANÈ C., TRINGALI S., SORTINO O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid mediterranean climate conditions. Sci. Hort. 129 (4), 590, 2011.
- 5. SMITH S.E., READ D.J. Mycorrhizal symbiosis, 3rd ed. Academic Press, Cambridge, UK, 2008.
- 6. RUIZ-SÁNCHEZ M., AROCA R., MUÑOZ Y. ARMADA E., POLÓN R., RUIZ-LOZANO J.M. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol. 167 (11), 862, 2010.
- 7. AZCÓN R., BAREA J.M. Mycorrhizosphere interactions for legume improvement. In Microbes for legume improvement, ed. Khan M.S., Zaidi A., Musarrat J., Springer: Vienna, Austria, Volume 2010, 237, 2010.
- 8. RUTH B., KHALVATI M., SCHMIDHALTER U. Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil. 342 (1-2), 459, 2011.
- 9. SMITH S.E., FACELLI E., POPE S., SMITH F.A. Plant performance in stressful environments: interpreting new and estiablished knowledge of the roles of arbuscular mycorrhizas. Plant Soil. 326 (1-2), 3, 2010.
- 10. NEUMANN E., GEORGE E. Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L.). Plant Soil. 261 (1-2), 245, 2004.
- 11. AUGÉ R.M., TOLER H.D., SAXTON A.M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza. 25 (1), 13, 2015.
- 12. GHARBI E., MARTÍNEZ J.P., BENAHMED H., HICHRI I., DOBREV P.I., MOTYKA V., QUINET Q., LUTTS S. Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. Plant Sci. 258, 77, 2017.
- 13. PATANÈ C., SCORDIA D., TESTA G., COSENTINO, S.L. Physiological screening for drought tolerance in Mediterranean long-storage tomato. Plant Sci. 249, 25, 2016.
- 14. LATEF A.A.H.A., HASHM A., RASOOL S., ABD_ALLAH E.F., ALQARAWI A.A., EGAMBERDIEVA D., JAN S., ANJUM N.A., AHMAD P. Arbuscular Mycorrhizal Symbiosis and Abiotic Stress in Plants. J. Plant Biol. 59 (5), 407, 2016.
- 15. SUZUKI N., RIVERO R.M., SHULAEV V., BLUMWALD E., MITTLER R. Abiotic and biotic stress combinations. New Phytol. 203 (1), 32, 2014.
- 16. ORTIZ N., ARMADAA E., DUQUE E., ROLDÁNC A., AZCÓNA. R. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: Effectiveness of autochthonous or allochthonous strains. J. Plant Physiol. 174, 87, 2015.
- 17. ARMADA E., AZCÓN R., LÓPEZ-CASTILLO O.M., CALVO-POLANCO M., RUIZ-LOZANO J.M. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol. Biochem. 90 , 64, 2015.
- 18. SCHÜßLER A., WALKER C. The Glomeromycota: a species list with new families and genera. Arthur Schüßler & Christopher Walker, Gloucester. 2010.
- 19. PÉK Z., SZUVANDZSIEV P., DAOOD H.G., NEMÉNYI A., HELYES L. Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Open Life Sci. 9 (4), 383, 2014.
- 20. VIERHEILIG.H., PICHÉ Y. A modified procedure for staining arbuscular mycorrhizal fungi in roots. J. Plant Nutr Soil Sci. 161 (5), 601, 1998.
- 21. GIOVANNETTI M., MOSSE B. An evaluation of the techniques for measuring vesicular arbuscular mycorrhizal infections in roots. New Phytol. 84 (3), 489, 1980.
- 22. GREENA V.S., STOTTB D.E., DIACK. M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem. 38 (4), 693, 2006.
- 23. ADAM G., DUNCAN H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil. Biol. Biochem. 33 (7-8), 943, 2001.
- 24. KUMAR A., SHARMA S., MISHRA S. Influence of arbuscularmycorrhizal (AM) fungi and salinity on seedling growth, solute accumulation, and mycorrhizal dependency of Jatropha curcas L. J. Plant Growth Regul. 29 (3), 297, 2010.
- 25. MARTÍNEZ F., PALENCIA P., WEILAND C.M., ALONSO D., OLIVEIRA J.A. Influence of nitrification inhibitor DMPP on yield, fruit quality and SPAD values of strawberry plants. Sci. Hort. 185, 233, 2015.
- 26. VAN GOETHEM D., DE SMEDT S., VALCKE R., POTTERS G., SAMSON R. Seasonal, diurnal and vertical variation of chlorophyll fluorescence on Phyllostachys humilis in Ireland. Plos one. 8 (8), e72145, 2013.
- 27. BŐCS A., PÉK Z., HELYES L., NEMÉNYI A., KOMJÁTHY L. Effect of water supply on canopy temperature and yield of processing tomato. Cer. Res. Comm., 376, 1, 113, 2009.
- 28. BATES L.S., WALDREN R.P., TEARE I.D. Rapid determination of free proline for water-stress studies. Plant Soil. 39 (1), 205, 1973.
- 29. Claussen W. Proline as a measure of stress in tomato plants. Plant Sci. 168 (1), 241, 2005.
- 30. BAUM C., EL-TOHAMY W., GRUDA N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi. Sci. Hort. 187, 131, 2015.
- 31. SYMANCZIK S.,COURTY P-E., BOLLER T., WIEMKEN A., AL-YAHYA’EI M.N. Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza. 25 (8), 639, 2015.
- 32. BAREA J.M., AZCON R., AZCON-AGUILAR C. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81 (1-4), 343, 2002.
- 33. JEZDINSKY A., VOJTISKOVA J., SLEZAK K., PETRIKOVA K., POKLUDA. R. Effect of drought stress and Glomus inoculation on selected physiological processes of sweet pepper (Capsicum annuum L. cv ‘Slavy’). Acta Univer. Agricul. Silvicul. Mendelianae Brunensis. 60 (3), 69, 2012.
- 34. BÁRZANA G., AROCA R., PAZ J.A., CHAUMONT F., MARTINEZ-BALLESTA M.C. CARVAJAL M., RUIZ-LOZANO J.M. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann. Bot. 109 (5), 1009, 2012.
- 35. COYNE P.I., AIKEN R.M., MAAS S.J., LAMM F.R. Evaluating yield tracker forecasts for maize in western Kansas. Agron J. 101 (3), 671, 2009.
- 36. ZHANG Y., YAO Q., LI J., HU Y., CHEN J. Growth response and nutrient uptake of Eriobotrya japonica plants inoculated with three isolates of arbuscular mycorrhizal fungi under water stress condition. J. Plant Nutr. 37 (5), 690, 2014.
- 37. PATANÈ C., PELLEGRINO A., SAITA A. Nitrogen use efficiency of processing tomato under deficit irrigation in semi-arid climate. Acta Hort. 1150, 329, 2017.
- 38. BAKR J., DAOOD H.G., PÉK Z., HELYES L., POSTA K. Yield and quality of mycorrhized processing tomato under water scarcity. Appl. Ecol. Env. Res. 15 (1), 401, 2017.
- 39. CONVERSA G., LAZZIZERA C., BONASIA A., ELIA A. Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biol. Fertil. Soils 49 (6), 691, 2013.
- 40. BIRHANE E., STERCK F.J., FETENE M., BONGERS F., KUYPER T.W. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecol. 169 (4), 895, 2012.
- 41. CANDIDO V., CAMPANELLI G., D’ADDABBO T., CASTRONUOVO D., PERNIOLA M., CAMELE I. Growth and yield promoting effect of artificial mycorrhization on field tomato at different irrigation regimes. Sci. Hort. 187, 35, 2015.
- 42. PATANÈ C., LA ROSA S., PELLEGRINO A., SORTINO O., SAITA A. Water productivity and yield response factor in two cultivars of Processing tomato as affected by deficit irrigation under semi-arid climate conditions. Acta Hort. 1038, 449, 2014.
- 43. ASRAR A.A., ABDEL-FATTAH G.M., ELHINDI K.M. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica. 50 (2), 305, 2012.
- 44. YU M.H., DING G.D., GAO G.L., ZHAO Y.Y., YAN L., SAI K. Using Plant Temperature to Evaluate the Response of Stomatal Conductance to Soil Moisture Deficit. Forests. 6 (10), 3748, 2015.
- 45. FAN Q.J., LIU J.H. Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta. Physiol. Plant. 33 (4), 1533, 2011.
- 46. YOOYONGWECH S., PHAUKINSANG N., CHA-UM S., SUPAIBULWATANA K. Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul. 69 (3), 285, 2013.
- 47. DOUBKOVÁ P., VLASÁKOVÁ E., SUDOVÁ R. Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil. 370 (1-2), 149, 2013.
- 48. PADMAVATHI T., RASHMI D., SWETHA S. Influence of Rhizophagus spp. and Burkholderia seminalis on the Growth of Tomato (Lycopersicon esculatum) and Bell Pepper (Capsicum annuum) under Drought Stress. Commun. Soil Sci. Plant Anal. 47 (17), 1975, 2016.
- 49. RÖMHELD V., KIRKBY E.A. Research on potassium in agriculture: needs and prospects. Plant Soil. 335 (1-2), 155, 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-945e8b26-c089-4a8d-8065-b427fbbf8303