Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 4 |
Tytuł artykułu

Death effects assessment of PM2.5 pollution in China

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The provinces of China have suffered from severe PM2.5 pollution in recent years, presenting a significant threat to human health. Identifying associations between mortality rate and PM2.5 level is extremely useful for a range of purposes, such as the development of preventive measures, increasing health awareness, and establishing disaster warning systems. Based on remote sensing data, station monitoring data, and statistical data, this paper uses the exposure response function, regression analysis, and kriging to evaluate the number of deaths in China’s 31 provinces caused by PM2.5 pollution in 2015. Variations in the number of deaths and mortality rates in China under different PM2.5 concentration control standards have been simulated by a range of countries and organizations helping to develop optimal control standards for each province individually according to actual PM2.5 concentration. These results show that: 1) PM2.5 pollution has an important effect on the mortality rate in China. The rate caused by PM2.5 pollution in 2015 accounted for 1.75‰, or approximately 2.62 million people and 31.14% of all deaths in China. 2) Strict control standards for PM2.5 concentration can bring significant health benefits, with projections that if PM2.5 concentration in China’s provinces were controlled to the level set by China, the EU, Japan, USA, and Australia, the number of deaths caused by PM2.5 pollution would be reduced by approximately 0.95, 1.52, 2.02, 2.26, and 2.49 million people, respectively, or 36.24%, 58.08%, 79.91%, 86.47%, and 95.20% compared with baseline year data. 3) Choosing appropriate control targets for limiting PM2.5 concentrations in different provinces in China is an effective way to obtain optimal health benefits. Beijing, Tianjin, Hebei, Shandong, and Henan should adopt a 35 μg/m3 standard with a 25 μg/m3 standard appropriate for Shanxi, Liaoning, Jilin, Shanghai, Jiangsu, Zhejiang, Anhui, Hubei, Hunan, Chongqing, Shanxi, and Xinjiang; 13 provinces, including Inner Mongolia, Heilongjiang, Fujian, Jiangxi, Guangdong, Guangxi, Sichuan, Guizhou, Yunnan, Tibet, Gansu, Qinghai, and Ningxia, should adopt the 15 μg/m³ standard; and Hainan should consider choosing a 12 μg/m³ standard.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
4
Opis fizyczny
p.1813-1821,fig.,ref.
Twórcy
autor
  • College of Environment and Planning, Henan University, Kaifeng 475004, China
  • Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Kaifeng 475004, China
  • Collaborative Innovation Center of Urban-Rural Coordinated Development, Henan Province, Zhengzhou 450046, China
autor
  • College of Environment and Planning, Henan University, Kaifeng 475004, China
  • Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Kaifeng 475004, China
  • Collaborative Innovation Center of Urban-Rural Coordinated Development, Henan Province, Zhengzhou 450046, China
autor
  • College of Environment and Planning, Henan University, Kaifeng 475004, China
  • Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Kaifeng 475004, China
autor
  • College of Environment and Planning, Henan University, Kaifeng 475004, China
Bibliografia
  • 1. COHEN A.J., BRAUER M., BURNETT R., ANDERSON H.R., FROSTAD J., ESTEP K., BALAKRISHNAN K., BRUNEKREEF B., DANDONA L., DANDONA R., FEIQIN V., FREEDMAN G., HUBBELL B., JOBLING A., KAN H., KNIBBS L., LIU Y., MARTIN R., MORAWSKA L., POPE III C.A., SHIN H., STRAIF K., SHADDICK G., THOMAS M., VAN D.R., VAN D.A., VOS T., MURRAY C.J.L., FOROUZANFAR M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389 (10082), 1907, 2017.
  • 2. NAWAHDA A., YAMASHITA K., OHARA T., KUROKAWA J., YAMAJI K. Evaluation of premature mortality caused by exposure to PM2.5, and ozone in east Asia: 2000, 2005, 2020. Water Air and Soil Pollution, 223 (6), 3445, 2012.
  • 3. COHEN A.J., ROSS A.H., OSTRO B., PANDEY K.D., KRZYZANOWSKI M., KUNZLI N., GUTSCHMIDT K., POPE A., ROMIEU I., SAMET J.M., SMITH K. The global burden of disease due to outdoor air pollution. Journal of Toxicology and Environmental Health, 68 (14), 1301, 2005.
  • 4. POBE III P.C., DOCKERY D. W. Health effects of fine particulate air pollution: lines that connect. Journal of the Air and Waste Management Association, 56 (6), 709,2006.
  • 5. JERRETT M., BURNETT R.T., BECKERMAN B.S., TURNER M.C., KEWSKI D., THURSTON G., MARTIN R.V., VAN DONKELAAR A., HUQHES E., SHI Y., GAPSTUR S.M., THUN M.J., POBE III C.A. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16 (6), 727, 2005.
  • 6. JEREMY P.L., NICHOLAS L.M. Air pollution and mortality in Europe. Lancet, 383 (9919), 758,2014.
  • 7. PUETT R.C., HART J.E., SUH H., MITTLEMAN M., LADEN F. Participate matter exposures, mortality, and cardiovascular disease in the health professional follow-up study. Environmental Health Perspectives, 119 (8), 1130, 2011.
  • 8. TURNER M.C., KREWSKI D., CHEN Y., GAPSTUR S.M., THUN M.J. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. American Journal of Respiratory and Critical Care Medicine, 184 (12), 1374,2011.
  • 9. HOEK G., KRISHNAN R.M., BEELEN R., PETERS A., OSTRO B., BRUNEKREEF B., KAUFMAN J.D. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environmental Health a Global Access Science Source, 12 (1), 43, 2013.
  • 10. DAN L.C., PETERS P.A., HYSTAD P., BROOK J.R., DONKELAAR A.V., MARTIN R.V., VILLENEUVE P.J., JERRETT M., GOLDBERG M.S., POBE III C.A., BRAUER M., BROOK R.D., ROBICHAUD A., MENARD R., BURNETT R. Ambient PM2.5, O₃, and NO₂ exposures and associations with mortality over 16 years of followup in the Canadian census health and environment cohort (CANCHEC). Environmental Health Perspectives, 123 (11), 1180, 2015.
  • 11. TIAN S., PAN Y., LIU Z., WEN T., WANG Y. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, china. Journal of Hazardous Materials, 279, 452, 2014.
  • 12. WANG Z.B., FANG C.L., XU G., YANG P. Spatial-temporal characteristics of the PM2.5 in china in 2014. Acta Geographica. Sinica, 70 (11), 1720, 2015.
  • 13. LI Q., WANG E., ZHANG T., HU H. Spatial and temporal patterns of air pollution in Chinese cities. Water Air and Soil Pollution, 228 (3), 92, 2017.
  • 14. ZHAO P.S., DONG F., HE D., ZHAO X.J., ZHANG X.L., ZHANG W.Z., YAO Q., LIU H.Y. Characteristics of concentrations and chemical compositions for PM2.5 in the region of Beijing, Tianjin, and Hebei, Annual meeting of the China meteorological society, 13 (9), 4631, 2013.
  • 15. ZHANG A., QI Q., JIANG L., ZHOU F., WANG J. Population exposure to pm PM2.5 in the urban area of Beijing. Plos One, 8 (5), e63486, 2013.
  • 16. GUAN D., SU X., ZHANG Q., PETERS G.P., LIU Z., LEI Y., HE K. The socioeconomic drivers of china’s primary PM2.5 emissions. Environmental Research Letters, 9 (2), 024010, 2014.
  • 17. YANG K., YANG Y.L., ZHU Y.H., LI C., MENG C. Social and economic drivers of PM2.5 and their spatial relationship in China. Geographical Research, 35 (6), 1051, 2016.
  • 18. LI S.S., CHEN N.L., XU J., NIE L., MENG F., Pan T., TANG W., ZHANG Y.J. Spatial and temporal disturbing and source simulation of PM2.5 in Beijing-Tianjin-Hebei region in 2014. China Environmental Science, 35 (10), 2908, 2015.
  • 19. Ge Y., Wang M.X., Bai X., Yao J., Zhu Z.R. Pollution characteristics and potential sources of PM2.5 in Su-Xi-Chang region. Acta Scientiae Circumstantiae, 37 (3), 803, 2017.
  • 20. KAN H., CHEN R., TONG S. Ambient air pollution, climate change, and population health in china. Environment International, 42 (1), 10,2012.
  • 21. 2CHEN Y., EBENSTEIN A., GREENSTONE M., LI H. Evidence on the impact of sustained exposure to air pollution on life expectancy from china’s Huai river policy. Proceedings of the National Academy Sciences of the United States of America, 110, 12936, 2013.
  • 22. LIU J., HAN Y., TANG X., ZHU J., ZHU T. Estimating adult mortality attributable to PM2.5 exposure in china with assimilated PM2.5 concentrations based on a ground monitoring network. Science of the Total Environment, 568, 1253, 2016.
  • 23. FANG D., WANG Q., LI H., YU Y., LU Y., QIAN X. Mortality effects assessment of ambient PM2.5 pollution in the 74 leading cities of china. Science of the Total Environment, 569-570, 1545, 2016.
  • 24. LIU S., SONG G.J. Dose-response relationship between daily PM2.5 concentrations and mortality rate: a meta-analysis. China Public health, 33(1), 14, 2016.
  • 25. VAN D.A., MARTIAN R.V., BRAUER M., BOYS B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environmental Health Perspectives, 123 (2), 135, 2015.
  • 26. BURNETT R.T., RD P.C., EZZATI M., OLIVES C., LIM S.S., MEHTA S., SHIN H.H., SINGH G., HUBBELL B., BRAUER M., ANDERSON H.R., SMITH K.R., BALMES J.R., BRUCE N.G., KAN H., LADEN F., TUENER M.C., GAPSTUR S.M., DIVER W.R., COHEN A. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122 (4), 397,2014.
  • 27. ZHANG M., SONG Y., CAI X., ZHOU J. Economic assessment of the health effects related to particulate matter pollution in 111 Chinese cities by using economic burden of disease analysis. Journal of Environmental Management, 88 (4), 947, 2008.
  • 28. SHI W.J., TAO F.L., ZHANG Z. Identifying contributions of climate change to crop yields based on statistical models: a review. Acta Geographica Sinica, 67 (9), 1213, 2012.
  • 29. XU J.H. Mathematical methods in contemporary geography. Beijing: Higher Education Press. 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-93b379d3-9c88-44aa-bad0-6e2a22c807fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.