Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 4 |
Tytuł artykułu

An Inexact Sequential Response Planning approach for optimizing combinations of multiple floodplain management policies

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study proposes an inexact sequential response planning (ISRP) approach for floodplain management on the basis of two-stage stochastic programming techniques. It can facilitate rapid response decision making for upcoming severe flood disasters by efficiently operating available multiple control measures in a quantified manner. The case study considers a floodplain management problem where decision makers want to obtain a cost-effective combination of multiple floodplain management policies (i.e. constructing hydraulic engineering, flood diversion) for coping with the upcoming flooding disasters with various severity levels. Optimal management strategies obtained from ISRP are analyzed, following by the demonstration of extending potentials.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
23
Numer
4
Opis fizyczny
p.1245-1253,fig.,ref.
Twórcy
autor
  • College of Renewable Energy, North China Electric Power University, Beijing, 102206 China
autor
  • College of Renewable Energy, North China Electric Power University, Beijing, 102206 China
autor
  • College of Renewable Energy, North China Electric Power University, Beijing, 102206 China
autor
  • Suzhou Research Academy, North China Electric Power University, Beijing, 102206 China
Bibliografia
  • 1. DU PLESSIS L.A., VILJOEN M.F. Determining the bene­fits of flood mitigation measures in the lower Orange River: A GIS application. Water SA, 25, (2), 205, 1999.
  • 2. MORI K., PERRINGS C. Optimal management of the flood risks of floodplain development. Sci. Total Environ., 431, 109, 2012.
  • 3. PALIJAN G., BOGUT T., VIDAKOVIC J. Effects of high water levels on bacterioplankton abundance in the Danube river floodplain (Kopacki Rit, Croatia). Pol. J. Environ. Stud., 16, (1), 113, 2007.
  • 4. HE L., HUANG G.H. ZENG G.M., LU H.W. A fuzzy inex­act mixed-integer semi-infinite programming method for municipal solid waste management planning. J. Environ. Eng., 134, (7), 572, 2008.
  • 5. LU H.W., HUANG G.H., HE L. An inexact rough-interval fuzzy linear programming method for generating conjunc­tive water-allocation strategies to agricultural irrigation sys­tems. Appl Math Model, 35, 4330, 2011.
  • 6. DYSARZ T., WICHER-DYSARZ J. Application of hydro- dynamic simulation and frequency analysis for assessment of sediment deposition and vegetation impacts on floodplain inundation. Pol. J. Environ. Stud., 20, (6), 1441, 2011.
  • 7. SLYS D., DZIOPAK J. Development of mathematical model for sewage pumping-station in the modernized com­bined sewage system for the town of Przemysl. Pol. J. Environ. Stud., 20, (3), 74, 2011.
  • 8. ZARKESH M.M.K., SHARIFI E., ALMASI N. Degradation mitigation management of recreational water­sheds by selecting the most suitable action plan based on multi-criteria decision-making methods. Pol. J. Environ. Stud., 21, (5), 1481, 2012.
  • 9. KHATUAL K.K., PATRA K.C., MOHANTY P. K. Stage- discharge prediction for straight and smooth compound channels with wide floodplains. J. Hydraul. Eng., 138, (1), 93, 2012.
  • 10. DAYJ.C. WEISZ R.N. A linear programming model for use in guiding urban floodplain management. Water Resour Res, 12, (3), 349, 1976.
  • 11. HOPKINS L.D., BRILL E.D., KURTZ K.B., WENZE H. G. Analyzing floodplain policies using an interdependent land use allocation model. Water Resour Res, 17, (3), 469, 1981.
  • 12. NEEDHAMJ.T., WATKINS D.W., LUND J.R., NANDA S. Linear programming for flood control in the Iowa and Des Moines rivers. J. Water Resour. Plann. Manage., 126, (3), 118, 2000.
  • 13. OLSEN J.R., BELING P.A., LAMBERT J.H. Dynamic models for floodplain management. J Water Res Pl-Asce, 126, (3), 167, 2000.
  • 14. AKTER T., SIMONOVIC S.P. Aggregation of fuzzy views of a large number of stakeholders for multi-objective flood management decision-making. J Environ Manage, 77, (2), 133, 2005.
  • 15. HAYNES H., HAYNES R., PENDER G. Integrating socio­economic analysis into decision-support methodology for flood risk management at the development scale (Scotland). Water Environ J, 22, (2), 117, 2008.
  • 16. JUNG H.C., JASINSKI M., KIM J.W., SHUM C.K., BATES P., NEAL J., LEE H., ALSDORF D. Calibration of two-dimensional floodplain modeling in the central Atchafalaya Basin floodway system using SAR interferom­etry. Water Resour Res, 48, (7), 2012.
  • 17. LUND J.R. Floodplain planning with risk-based optimiza­tion. J Water Res Pl-Asce, 128, (3), 202, 2002.
  • 18. HUANG G.H., LOUCKS D.P. An inexact two-stage sto­chastic programming model for water resources manage­ment under uncertainty. Civ Eng Environ Syst, 17, 95, 2000.
  • 19. KAZMIERCZAK B., KOTOWSKI A. Depth-duration-fre­quency rainfall model for dimensioning and modeling of Wroclaw drainage systems. Environ Prot Eng, 38, (4), 127, 2012.
  • 20. GUO P., HUANG G. H., HE L., ZHU H. Interval-parameter two-stage stochastic semi-infinite programming: Application to water resources management under uncer­tainty. Water Resour. Manag., 23, (5), 1001, 2009.
  • 21. YAMOU G.M., HATFIELD K., ROMEIJN H.E. Comparison of new conditional value-at-risk-based man­agement models for optimal allocation of uncertain water supplies. Water Resour Res, 43, (7), 2007.
  • 22. LU H. W., HUANG G. H., HE L. Inexact rough-interval two- stage stochastic programming for conjunctive water alloca­tion problems. J. Environ. Manage., 91, (1), 261, 2009.
  • 23. GLAMORE W., INDRARATNA B. A two-stage decision support tool for restoring tidal flows to flood mitigation drains affected by acid sulfate soil: case study of Broughton Creek floodplain, New South Wales, Australia. SR, 42, (6) 639, 2004.
  • 24. HIGGINS A.J., BRYAN B.A., OVERTON I.C., HOL­LAND K., LESTER R.E., KING D., NOLAN M., CON­NOR J.D. Integrated modelling of cost-effective siting and operation of flow-control infrastructure for river ecosystem conservation. Water Resour Res, 47, (5), 2011.
  • 25. FU Y.C., RUAN B.Q., GAO T. Watershed Agricultural Non­Point Source Pollution Management. Pol. J. Environ. Stud., 22, (2), 367, 2013.
  • 26. TCHORZEWSKA-CIESLAK B. Matrix method for esti­mating the risk of failure in the collective water supply sys­tem using fuzzy logic. Environ Prot Eng, 37, (3), 111, 2011.
  • 27. XU J.P., ZHOU X.Y. Approximation based fuzzy multi- objective models with expected objectives and chance con­straints: Application to earth-rock work allocation. Inform Sciences, 238, 75, 2013.
  • 28. MUSTAPHA A., ARIS A.Z. Multivariate statistical analysis and environmental modeling of heavy metals pollution by industries. Pol. J. Environ. Stud., 21, (5), 1359, 2012.
  • 29. NEAL J., SCHUMANN G., BATES P. A subgrid channel model for simulating river hydraulics and floodplain inun­dation over large and data sparse areas. Water Resour Res, 48, (11), 2012.
  • 30. GONZALEZ-SANCHIS M., MURILLO J., LATORRE B., COMIN F., GARCIA-NAVARR P. Transient two-dimen­sional simulation of real flood events in a Mediterranean floodplain. J. Hydraul. Eng., 138, (7), 629, 2012.
  • 31. RAY T., STEPINSKI E., SEBASTIAN A., BEDIENT P.B. Dynamic modeling of storm surge and inland flooding in a Texas Coastal floodplain. J. Hydraul. Eng., 137, (10), 1103, 2011.
  • 32. RAY T., FENG Z., BEDIENT P.B. Assessment of flood risk due to storm surge in coastal bayous using dynamic hydraulic modeling. World Environmental and Water Resources Congress, 1-10, 2009.
  • 33. ZHANG Y. M., LU H.W., HE L. DU P. An interactive inex­act fuzzy bounded programming approach for agricultural water quality management. Agr. Water Manage., 133, 104, 2013.
  • 34. HE L., HUANG G. H., LU H. W. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Adv. Water Resourc, 31, (12), 1622, 2008.
  • 35. FRANKS S.W., GINESTE P., BEVEN K.J., MEROT P. On constraining the predictions of a distributed model: the incorporation of fuzzy estimates of saturated areas into the calibration process. Water Resour Res, 34, (4), 787, 1998.
  • 36. SCHULZ K., HUWE B., PEIFFER S. Parameter uncertain­ty in chemical equilibrium calculations using fuzzy set the­ory. JH, 217, (1-2), 119, 1999.
  • 37. KHADAM I.M, KALUARACHCHI J.J. Use of soft infor­mation to describe the relative uncertainty of calibration data in hydrologic models. Water Resour Res, 40, (11), 2004.
  • 38. MPIMAPASH., ANAGNOSTOPOULOS P., GANOULIS J. Modelling of water pollution in the Thermaikos Gulf with fuzzy parameters. Ecol Model, 142, (1-2), 91, 2001.
  • 39. LU H.W., HUANG G.H., ZENG G.M., MAQSOOD I., HE L. An inexact two-stage fuzzy-stochastic programming model for water resources management. Water Resour Manag, 22, (8), 991, 2008.
  • 40. HE L., HUANG G.H., ZENG G.M., LU H.W. Identifying optimal regional solid waste management strategies through a new inexact integer model containing infinite objectives and constraints. Waste Manage, 29, (1), 21, 2009.
  • 41. SLYS D., STEC A. Hydrodynamic modeling of the com­bined sewage system for the city of Przemysl. Environ. Prot. Eng., 38, (4), 99, 2012.
  • 42. MAQSOOD I. Development of simulation-and optimiza­tion-based decision support methodologies for environmen­tal systems management. University of Regina, 2004.
  • 43. IWANEJKO R. Multicriterion AHP decision making model as a tool for supporting the selection of optimal decision in a water supply system. Environ Prot Eng, 33, (2), 141, 2007.
  • 44. SHERALI H.D., CARTER T.B., HOBEIKAA.G. A loca­tion-allocation model and algorithm for evacuation planning under hurricane flood conditions. Transport Res B-Meth, 25, (6), 439, 1991.
Uwagi
rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-931faa04-81f8-420e-8d0e-1391ea778095
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.