Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 5 |
Tytuł artykułu

Gene cloning, protein expression and functional analysis of a type 3 metallothionein with bioaccumulation potential from Sonneratia alba

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sonneratia alba (S. alba) is a mangrove species grown in brackish water of tropical and subtropical regions. Due to its unique environment, it has evolved various mechanisms for modulating salt and metal levels. In order to find the genes connected with bioaccumulation of metals, the root transcriptome annotation of Sonneratia alba was analyzed and a new metallothionein (MT) gene was cloned. Sequence analysis found that the new MT gene belongs to type 3 MT, which is mostly expressed in roots. A simple and efficient method was used to express the type 3 MT of S. alba (SaMT3) by transforming the recombinant expression vector pET15b-SaMT3 into Escherichia coli (E. coli) Rosetta-gami and induction with the optimal conditions of 500 μM Isopropyl β-D-1-thiogalactopyranoside (IPTG) at 24ºC for 12 h. OD₆₀₀ of E. coli cells expressing His fused SaMT3 protein after treated with 500 μM Cu²⁺ or 500 μM Pb²⁺ for 12 h can reach 1.01 or 0.98, while OD₆₀₀ of control cells expressing His-tag can reach only 0.81 or 0.75. Both control cells and the cells expressing SaMT3 accumulated metals. Cells expressing SaMT3, however, accumulated more Pb²⁺ and Cu²⁺ (more than two times) than control cells. In vivo, real-time PCR showed that the SaMT3 transcript was induced significantly when stimulated with 250 μM, 500 μM, or 1,000 μM Cu²⁺ or Pb²⁺ for 24 h and 48 h. Taken together, the expression of SaMT3 can increase Cu²⁺ and Pb²⁺ resistance and binding capacity of E. coli.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
5
Opis fizyczny
p.2203-2212,fig.,ref.
Twórcy
autor
  • Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
  • Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
autor
  • Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
  • Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
autor
  • Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
  • Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
autor
  • Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
  • Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
autor
  • Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
  • Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
autor
  • State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510530, China
autor
  • Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 19, Tampa, FL 33612, USA
autor
  • Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 19, Tampa, FL 33612, USA
autor
  • Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
  • Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
Bibliografia
  • 1. KAPOOR V., LI X., ELK M., CHANDRAN K., IMPELLITTERI C.A., DOMINGO J.W.S. Impact of Heavy Metals on Transcriptional and Physiological Activity of Nitrifying Bacteria. Environmental Science & Technology, 49 (22), 13454, 2015.
  • 2. TAN M.X., SUM Y.N., YING J.Y., ZHANG Y.G. A mesoporous poly-melamine-formaldehyde polymer as a solid sorbent for toxic metal removal.Energy & Environmental Science, 6, 3254, 2013.
  • 3. JOVIC M., STANKOVIC S. Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area. Food and Chemical Toxicology, 70, 241, 2014.
  • 4. MUDALKAR S., GOLLA R., SENGUPTA D., GHATTY S., REDDY A.R. Molecular cloning and characterisation of metallothionein type 2a gene from Jatropha curcas L., a promising biofuel plant. Molecular Biology Reports, 41 (1), 113, 2014.
  • 5. HOUGH R.L., BREWARD N., YOUNG S.D., CROUT N.M.J., TYE A.M., MOIR A.M., THORNTON I. Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environmental Health Perspectives, 112 (2), 215, 2004.
  • 6. CHEN C.L., CHEN Y.H., XIE T.H., WANG M.K., WANG, G. Removal, redistribution, and potential risks of soil Cd, Pb, and Zn after washing with various extractants. Environmental Science and Pollution Research, 22 (21), 16881, 2015.
  • 7. UDOVIC M., LESTAN D. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching.Chemosphere, 74 (10), 1367, 2009.
  • 8. ULLAH A. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117, 28, 2015.
  • 9. GARBISU C., ALKORTA I. Phytoextraction: a costeffective plant-based technology for the removal of metals from the environment. Bioresource Technology 77 (3), 229, 2001.
  • 10. GUO W.J., BUNDITHYA W., GOLDSBROUGH P.B. Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytologist, 159 (2), 369, 2003.
  • 11. SHAHPIRI A., SOLEIMANIFARD I., ASADOLLAHI M.A. Functional characterization of a type 3 metallolthionein isoform (OsMTI-3a) from rice. International Journal of Biological Macromolecules, 73, 154, 2015.
  • 12. HEGELUND J.N., SCHILLER M., KICHEY T., HANSEN T.H., PEDAS P., HUSTED S., SCHJOERRING J.K. Barley Metallothioneins: MT3 and MT4 Are Localized in the Grain Aleurone Layer and Show Differential Zinc Binding. Plant Physiology, 159 (3), 1125, 2012.
  • 13. FREISINGER E. Structural features specific to plant metallothioneins. Journal of Biological Inorganic Chemistry, 16 (7), 1035, 2011.
  • 14. HASEGAWA A., OYANAGI T., MINAGAWA R., FUJII Y., SASAMOTO H. An inverse relationship between allelopathic activity and salt tolerance in suspension cultures of three mangrove species, Sonneratia alba, S. caseolaris and S. ovata: development of a bioassay method for allelopathy, the protoplast co-culture method.Journal of Plant Research, 127 (6), 755, 2014.
  • 15. TACCHI L., LARRAGOITE E.T., MUNOZ P., AMEMIYA C.T., SALINAS I. African Lungfish Reveal the Evolutionary Origins of Organized Mucosal Lymphoid Tissue in Vertebrates. Current Biology, 25 (18), 2417, 2015.
  • 16. KAO W.C., CHIU Y.P., CHANG C.C., CHANG J.S. Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnology Progress, 22 (5), 1256, 2006.
  • 17. LI X.Y., CHENG J.Y., ZHANG J., SILVA J.A.T., WANG C.X., SUN H.M. Validation of Reference Genes for Accurate Normalization of Gene Expression in Lilium davidii var. unicolor for Real Time Quantitative PCR. Plos One, 10 (10), 100, 2015.
  • 18. MAZZEI V., GIANNETTO A., BRUNDO M.V., MAISANO M., FERRANTE M., COPAT C., MAUCERI A., LONGO G. Metallothioneins and heat shock proteins 70 in Armadillidium vulgare (Isopoda, Oniscidea) exposed to cadmium and lead. Ecotoxicology and Environmental Safety, 116, 99, 2015.
  • 19. LI Y., CHEN Y.Y., YANG S.G. TIAN W.M. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals. Biochemical and Biophysical Research Communications, 461 (1), 95, 2015.
  • 20. DUNDAR E., SONMEZ G.D., UNVER T. Isolation, molecular characterization and functional analysis of OeMT2, an olive metallothionein with a bioremediation potential. Molecular Genetics and Genomics, 290 (1), 187, 2015.
  • 21. LI M., ZHANG Z.B., SHANG J., LIANG B., YU L.L. Enhanced Pb2+ biosorption by recombinant Saccharomyces cerevisiae expressing human metallothionein. Monatshefte Fur Chemie, 145 (1), 235, 2014.
  • 22. MALIK A., FENSHOLT R., MERTZ O. Mangrove exploitation effects on biodiversity and ecosystem services. Biodiversity and Conservation, 24 (14), 3543, 2015.
  • 23. NORONHA-D’MELLO C.A., NAYAK G.N. Assessment of metal enrichment and their bioavailability in sediment and bioaccumulation by mangrove plant pneumatophores in a tropical (Zuari) estuary, west coast of India. Marine Pollution Bulletin, 110 (1), 221, 2016.
  • 24. PAZ-ALBERTO A.M., CELESTINO A.B., SIGUA G.C. Phytoremediation of Pb in the sediment of a mangrove ecosystem. Journal of Soils and Sediments, 14 (1), 251, 2014.
  • 25. DOMENECH J., ORIHUELA R., MIR G., MOLINAS M., ATRIAN S., CAPDEVILA M. The Cd-II-binding abilities of recombinant Quercus suber metallothionein: bridging the gap between phytochelatins and metallothioneins. Journal of Biological Inorganic Chemistry, 12 (6), 867, 2007.
  • 26. FRANCHI N., PICCINNI E., FERRO D., BASSO G., SPOLAORE B., SANTOVITO G. BALLARIN L. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium. Aquatic Toxicology, 152, 47, 2014.
  • 27. LUO Z.B., WU C.H., ZHANG C., LI H., LIPKA U., POLLE A. The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environmental and Experimental Botany, 108, 47, 2014.
  • 28. DAGO A., GONZALEZ I., ARINO C., DIAZ-CRUZ J.M., ESTEBAN M. Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta, 118, 201, 2014.
  • 29. GONG J.M., LEE D.A., SCHROEDER J.I. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100 (17), 10118, 2003.
  • 30. PEROZA E.A., FREISINGER, E. Metal ion binding properties of Tricium aestivum E-c-1 metallothionein: evidence supporting two separate metal thiolate clusters. Journal of Biological Inorganic Chemistry, 12 (3), 377, 2007.
  • 31. LOEBUS J., JOHANSSEN S., FREISINGER E. Identification of a binding site preference during Cadmium poisoning: probing the metallothionein domain y-Ec-1 embedded Zn2Cys6 zinc finger motive. Journal of Biological Inorganic Chemistry, 19, S215, 2014.
  • 32. NAIK M.M., PANDEY A., DUBEY S.K. Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicology and Environmental Safety, 79, 129, 2012.
  • 33. ZHANG F.Q., WANG Y.S., SUN C.C., LOU Z.P., DONG J.D. A novel metallothionein gene from a mangrove plant Kandelia candel. Ecotoxicology, 21 (6), 1633, 2012.
  • 34. BLERIOT C., GAULT M., GUEGUEN E., ARNOUX P., PIGNOL D., MANDRAND-BERTHELOT M.A., RODRIGUE A. Cu binding by the Escherichia coli metal-efflux accessory protein RcnB. Metallomics, 6 (8), 1400, 2014.
  • 35. WU Y., GUO Z.Q., ZHANG W., TAN Q.G., ZHANG L., GE X.L., CHEN M.D. Quantitative Relationship between Cadmium Uptake and the Kinetics of Phytochelatin Induction by Cadmium in a Marine Diatom.Scientific Reports, 6, 2016.
  • 36. GONCALVES S.F. Sub-lethal cadmium exposure increases phytochelatin concentrations in the aquatic snail Lymnaea stagnalis. Science of the Total Environment, 568, 1054, 2016.
  • 37. CHEN J.F., YUAN J.G., WU S.S., LIN B.Y., YANG Z.Y. Distribution of trace element contamination in sediments and riverine agricultural soils of the Zhongxin River, South China, and evaluation of local plants for biomonitoring. Journal of Environmental Monitoring, 14 (10), 2663, 2012.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-925cd747-53c5-4b66-853e-60f7fa3ffc19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.