Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The organophosphorous (OP) pesticide fenthion is widely used in commercial fruit industry and orchards in South America. Among the metabolic effects in mammals caused by fenthion, hyperglycemia occurs via the activation of hepatic metabolic pathways, which may interfere with the function of several organs and systems. The purpose of this study was to evaluate the effects of acute and sub-chronic levels of fenthion on energy metabolism and liver morphology of frugivorous bats (Artibeus lituratus), which usually feed on fruits cultivated on South American plantations where fenthion is used. Animals were fed fruit treated with fenthion by immersion of fruit in a solution containing fenthion (500 ppm) and an adhesive spreader (200 ppm). Blood glucose levels did not change due to fenthion treatment, but muscle glycogen content increased and carcass fatty acids decreased after acute exposure. An increase in hepatocyte cell diameter further characterized as an increase in vacuolization was observed. The results indicate that fenthion may affect some components of energy metabolism and promote alterations in hepatocyte morphology in frugivorous bats when applied to cultivated fruits at the recommended rates.
Słowa kluczowe
Twórcy
autor
- Department of Animal Biology, Universidade Federal de Vicosa, Av. PH Rolfs, s/n, Campus UFV, Vicosa - MG, Brazil, 36570-000
autor
- Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA
autor
- Department of General Biology, Universidade Federal de Vicosa, Av PH Rolfs s/n, Campus UFV, Vicosa - MG, Brazil, 36570-000
autor
- Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA
autor
- Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA
autor
- Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA
autor
- Department of General Biology, Universidade Federal de Vicosa, Av PH Rolfs s/n, Campus UFV, Vicosa - MG, Brazil, 36570-000
autor
- Center for Ecology and Conservation Biology, Department of Biology, Boston University, Boston, MA 02215, USA
Bibliografia
- 1. M. Abdollahi , M. Donyavi , S. Pournourmohammadi , and M. Saadat . 2004. Hyperglycemia associated with increased hepatic glycogen Phosphorylase and phosphoenolpyruvate carboxykinase in rats following subchronic exposure to malathion. Comparative Biochemistry Physiology, 137C: 343–347. Google Scholar
- 2. M. O. Al-Jahdali , A. S. B. Bisher ., and I. M. Abuzeid . 2007. Physiological and histological alterations in rats liver induced by Sumithion® NP25/2.5 EC, an insecticide used indengue fever vector control in Jeddah, Saudi Arabia. Saudi Journal of Biological Science, 14: 43–51. Google Scholar
- 3. G. Allinson , C. Mispagel , N. Kajiwara , Y. Anan , J. Hashimoto , L. Laurenson , M. Allinson , and S. Tanabe . 2006. Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersii bassanii) in southeastern Australia. Chemosphere, 64: 1464–1471. Google Scholar
- 4. D. Bagchi , M. Bagchi , E. A. Hassoun , and S. J. Stohs . 1995. In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology, 104: 129–140. Google Scholar
- 5. D. Barham , and P. Trinder . 1972. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst, 97: 142–145. Google Scholar
- 6. K. Beardsall , K. Yuen , R. Willians , and D. Dunger . 2006. Applied physiology of glucose control. Current Paediatrics, 16: 434–438. Google Scholar
- 7. B. S. Bennett , and M. L. Teles . 2007. Organochlorine pesticide residues in guano of Brazilian freetailed bats, Tadarida brasiliensis Saint-Hilaire, from East Texas. Bulletin of Environmental Contamination and Toxicology, 78: 191–194. Google Scholar
- 8. F. P. Carvalho 2006. Agriculture, pesticides, food security and food safety. Environmental Science and Policy, 9: 685–692. Google Scholar
- 9. I. Celik , and H. Suzek . 2008. Subacute effects of methyl parathion on antioxidant defense systems and lipid peroxidation in rats. Food and Chemical Toxicology, 46: 2796–2801. Google Scholar
- 10. E. P. Corssmit , J. A. Romijn , and H. P. Sauerwein . 2001. Regulation of glucose production with special attention to nonclassical regulatory mechanisms: a review. Metabolism, 50: 742–755. Google Scholar
- 11. D. Cova , R. Perego , C. Nebuloni , G. Fontana , and G. P. Molinari . 1995. In vitro cytotoxicity of fenthion and related metabolites in human neuroblastoma cell lines. Chemosphere, 30: 1709–1715. Google Scholar
- 12. P. E. Cryer 1991. Regulation of glucose metabolism in man. Journal of Internal Medicine, 229: 31–39. Google Scholar
- 13. H. Fetoui , E. M. Garoui , and N. Zeghal . 2009. Lambdacyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Experimental and Toxicologic Pathology, 61: 189–196. Google Scholar
- 14. J. Folch , M. Less , and G. H. S. Stanley . 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226: 497–509. Google Scholar
- 15. M. B. Freitas , A. F. Welker , S. F. Millan , and E. C. Pinheiro . 2003. Metabolic responses induced by fasting in the common vampire bat Desmodus rotundus. Comparative Biochemistry and Physiology, 173B: 703–707. Google Scholar
- 16. M. B. Freitas , A. F. Welker , and E. C. Pinheiro . 2006. Seasonal variation and food deprivation in common vampire bats (Chiroptera: Phyllostomidae). Brazilian Journal of Biology, 66: 1051–1055. Google Scholar
- 17. Q. S. Garcia , J. L. P. Rezende , and L. M. S. Aguiar . 2000. Seed dispersal by bats in a disturbed area of Southeastern Brazil. International Journal of Tropical Biology and Conservation, 48: 125–128. Google Scholar
- 18. E. Jéquier 1994. Carbohydrates as a source of energy. American Journal of Clinical Nutrition, 59: 682–685. Google Scholar
- 19. V. Kumar , A. K. Abbas , and N. Fausto . 2005. Robbins e cotran: patologia: bases patológicas das doenças. Elsevier, São Paulo, 1616 pp. Google Scholar
- 20. T. H. Kunz , J. A. Wrazen , and C. D. Burnett . 1998. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience, 5: 8–17. Google Scholar
- 21. M. M. Lasram , A. B. Annabi , R. Rezg , N. Elj , S. Slimen , A. Kamoun , S. El-Fazaa , and N. Gearbi . 2008. Effect of short-time malathion administration on glucose homeostasis in Wistar rat. Pesticide Biochemistry and Physiology, 92: 114–119. Google Scholar
- 22. M. M. Lasram , A. B. Annabi , N. El Elj , S. Selmi , A. Kamoun , S. El-Fazaa , and N. Gearbi . 2009. Metabolic disorders of acute exposure to malathion in adult Wistar rats. Journal of Hazardous Materials, 163: 1052–1055. Google Scholar
- 23. C. Mispagel , M. Allinson , G. Allinson , N. Iseki , C. Grant , and M. Morita . 2004. DDT and metabolites residues in the southern bent-wing bat (Miniopterus schreibersii bassanii) of south-eastern Australia. Chemosphere, 55: 997–1003. Google Scholar
- 24. F. E. L. Pereira 2006. Degenerações. Morte celular. Alterações do interstício. Cap 4. Pp. 38–69, in Bogliolo — patalogia geral ( G. B. Fileo , ed.). Guanabara Koogan, Rio de Janeiro, Brasil, iii + 380 pp. Google Scholar
- 25. M. S. Pereira , and R. R. N. Alves . 2006. Composição florística de um remanescente de Mata Atlântica na Área de Proteção Ambiental Barra do Rio Mamanguape, Paraíba, Brasil. Revista de Biologia e Ciências da Terra, 7: 1–10. Google Scholar
- 26. E. C. Pinheiro 1995. Metabolismo intermediário de morcegos frugívoros. Ph.D. Thesis, University of São Paulo, São Paulo, Brasil, 106 pp. Google Scholar
- 27. E. C. Pinheiro , V. A. Taddei , R. H. Migliortni , and I. C. Kettelhut . 2006. Effect of fasting on carbohydrate metabolism in frugivorous bats (Artibeus lituratus and Artibeus jamaicensis). Comparative Biochemistry and Physiology, 143B: 279–284. Google Scholar
- 28. S. Pournourmohammadi , B. Farzami , S. N. Ostad , E. Azizi , and M. Abdollahi . 2005. Effects of malathion subchronic exposure on rat skeletal muscle glucose metabolism. Environmental Toxicology and Pharmacology, 19: 191–196. Google Scholar
- 29. S. Pournourmohammadi , S. N. Ostad , E. Azizi , M. H. Geaeremani , B. Farzami , B. Minaie , B. Lareani , and M. Abdollahi . 2007. Induction of insulin resistance by malathion: evidence for disrupted islets cells metabolism and mitochondrial dysfunction. Pesticide Biochemistry and Physiology, 88: 346–352. Google Scholar
- 30. R. Rahimi , and M. Abdollahi . 2007. A review on the mechanisms involved in hyperglycemia induced by organophosphorus pesticides. Pesticide Biochemistry and Physiology, 88: 115–121. Google Scholar
- 31. N. R. Reis , A. L. Peraccei , W. A. Pedro , and I. P. Lima . 2007. Morcegos do Brasil. Editora da Universidade Estadual de Londrina, Londrina, 253 pp. Google Scholar
- 32. J. P. Rey-López , G. Vicente-Rodríguez , M. Biosca , and L. A. Moreno . 2008. Sedentary behaviour and obesity development in children and adolescents. Nutrition, Metabolism & Cardiovascular Diseases, 18: 242–251. Google Scholar
- 33. R. Rezg , B. Mornagui , M. El-Arbi , A. Kamoun , S. El-Fazaa , and N. Gearbi . 2006. Effect of subchronic exposure to malathion on glycogen Phosphorylase and hexokinase activities in rat liver using native PAGE. Toxicology, 223: 9–14. Google Scholar
- 34. R. Rezg , B. Mornagui , A. Kamoun , S. El-Fazaa , and N. Gearbi . 2007. Effect of subchronic exposure to malathion on metabolic parameters in the rat. Comptes Rendus Biologies, 330: 143–147. Google Scholar
- 35. R. Rezg , B. Mornagui , S. El-Fazaa , and N. Gearbi . 2008. Biochemical evaluation of hepatic damage in subchronic exposure to malathion in rats: effect on superoxide dismutase and catalase activities using native PAGE. Comptes Rendus Biologies, 331: 655–662. Google Scholar
- 36. B. Sjörgren , T. Noerdenskjold , H. Holmgeen , and J. Mollerstrom . 1938. Beitrag zur Kenntnis der Leberrhythmik (Glykogen, Phosphor und Calcium in der Kaninchenleber). Pflugers Archiv für die Gesamte Physiologie des Menschern und der Tiere, 240–247. Google Scholar
- 37. R. K. Srivastava , and A. Krisena . 2008. Seasonal adiposity, correlative changes in metabolic factors and unique reproductive activity in a vespertilionid bat, Scotophilus heathi. Journal of Experimental Zoology, 309A: 94–110. Google Scholar
- 38. P. Trinder 1969. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology, 22: 158–161. Google Scholar
- 39. M. Varela-Rey , N. Embade , U. Ariz , S. C. Lu , J. M. Mato , and M. L. Martínez-Chantar . 2009. Non-alcoholic steatohepatitis and animal models: understanding the human disease. International Journal of Biochemistry & Cell Biology, 41: 969–976. Google Scholar
- 40. M. C. Wang , E. J. O'rourke , and G. Ruvkun . 2008. Fat metabolism links germline stem cells and longevity in C. elegans. Science, 322: 957–960. Google Scholar
- 41. A. Yavasoglu , F. Sayim , Y. Uyanikgil , M. Turgut , and N. U. Karabay-Yavasoglu . 2006. The pyrethroid cypermethrininduced biochemical and histological alterations in rat's liver. Journal of Health Science, 52: 774–780. Google Scholar
Uwagi
PL
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-91da2467-c5ec-4c9f-a6c1-63097dcf31ce