Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Different maize (Zea mays L.) varieties have been used for thousands of years as a healthy food source in Mesoamerica including pigmented maize. Maize ingestion could contribute to the reduction in the rate of non-communicable diseases and, in turn, to its function as an adjuvant in their management. These diseases are mainly associated with oxidative stress, which is characterized by a redox cell imbalance produced due to pro-oxidant molecules accumulation, inducing irreversible damages. Although the endogenous antioxidant defense system is efficient, exogenous antioxidants are necessary to help to prevent this damage. Bioactive compounds, like anthocyanins, contained in dietary plants exert a major activity against oxidative stress. Could the maize anthocyanins play a curative, preventive or complementary role in the treatment of chronic diseases? Here, we describe the occurrence of anthocyanins from pigmented maize and their chemical structures. Furthermore, the biosynthesis, bioavailability, and stability are also summarized. Finally, many in vitro and in vivo studies of maize anthocyanins are discussed that demonstrated their nutraceutical potential, antioxidant capacity, and other biological effects. Given the importance of the biological properties of maize anthocyanins, it is necessary to understand the current knowledge and propose further research or clinical studies which allows us to better elucidate the biological mechanism of maize anthocyanins derivatives of several varieties and processes of cooking and combination with other ingredients to enhance their nutritional and health benefits.
Słowa kluczowe
Wydawca
Rocznik
Tom
Numer
Opis fizyczny
p.85-99,fig.,ref.
Twórcy
autor
- Departamento de Biologia Molecular y Genomica, Instituto de Investigacion en Enfermedades Cronico Degenerativas, Instituto Transdisciplinar de Investigacion e Innovacion en Salud, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C. Sierra Mojada 950, Col.Independencia, C.P.44350, Guadalajara, Jalisco, Mexico
autor
- Departamento de Ingeniería Genetica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Irapuato, Libramiento Norte Km.9.6, C.P.36824, Irapuato Guanajuato, Mexico
autor
- Departamento de Ingenieria Genetica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Irapuato, Libramiento Norte Km.9.6, C.P.36824, Irapuato Guanajuato, Mexico
- Laboratorio Nacional Plan TECC, Libramiento Norte Km 9.6, C.P.36824 Irapuato, Guanajuato, Mexico
autor
- Departamento de Biologia Molecular y Genomica, Instituto de Investigacion en Enfermedades Cronico Degenerativas, Instituto Transdisciplinar de Investigacion e Innovacion en Salud, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, C. Sierra Mojada 950, Col.Independencia, C.P.44350, Guadalajara, Jalisco, Mexico
Bibliografia
- 1. Abdel-Aal, E.S., Abou-Arab, A., Gamel, T., Hucl, P., Young, J., Rabalski, I. (2008). Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties. Journal of Agricultural and Food Chemistry, 56(23), 11171-11177.
- 2. Abdel-Aal, E.S.M., Young, J.C., Rabalski, I. (2006). Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 54(13), 4696-4704.
- 3. Amnueysit, P., Tatakul, T., Chalermsan, N., Amnueysit, K. (2010). Effects of purple field corn anthocyanins on broiler heart weight. Asian Journal of Food and Agro-Industry, 3(3), 319-327.
- 4. Arroyo, J., Raez, E., Rodríguez, M., Chumpitaz, V., Burga, J., De la Cruz, W., Valencia, J. (2008). Antihypertensive and antioxidant activity of atomized Andean purple corn (Zea mayz L.) hydroalcoholic extract in rats. Revista Peruana de Medicina Experimental y Salud Publica, 25(2), 195-199 (in Spanish; English abstract).
- 5. Auger, C., Laurent, N., Laurent, C., Besançon, P., Caporiccio, B., Teissédre, P.L., Rouanet, J.M. (2004). Hydroxycinnamic acids do not prevent aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters. Life Sciences, 74(19), 2365-2377.
- 6. Aura, A.M., Martin-Lopez, P., O’Leary, K.A., Williamson, G., Oksman-Caldentey, K.M., Poutanen, K., Santos-Buelga, C. (2005). In vitro metabolism of anthocyanins by human gut microbiota. European Journal of Nutrition, 44(3), 133-142.
- 7. Aza-Gonzalez, C., Ochoa-Alejo, N. (2012). Characterization of anthocyanins from fruits of two Mexican chili peppers (Capsicum annuum L.). Journal of the Mexican Chemical Society, 56(2), 149-151.
- 8. Barrientos Ramírez, L., Ramírez-Salcedo, H.E., Fernández Aulis, M.F., Ruíz López, M.A., Navarro Ocaña, A., Vargas Radillo, J.J. (2018). Anthocyanins from rose maize (Zea mays L.) grains. Interciencia, 43(3), 188-192.
- 9. Bello-Pérez, L.A., Camelo-Mendez, G.A., Agama-Acevedo, E., Utrilla-Coello, R.G. (2016). Nutraceutic aspects of pigmented maize: digestibility of carbohydrates and anthocyanins. Agrociencia, 50(8), 1041-1063.
- 10. Betrán, F.J., Bockholt, A.J., Rooney, L.W. (2000). Blue corn. In A.R. Hallauer (Ed.), Specialty Corns, Second Edition, CRC Press, Boca Raton, Florida, USA, pp. 305-314.
- 11. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9-19.
- 12. Bitsch, R., Netzel, M., Frank, T., Strass, G., Bistch, I. (2004). Bioavailibility and biokinetics of anthocyanins from red grape juice and red wine. Journal of Biomedicine & Biotechnology, 2004(5), 293-298.
- 13. Bub, A., Watzl, B., Heeb, D., Rechkemmer, G., Briviba, K. (2001). Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. European Journal of Nutrition, 40(3), 113-120.
- 14. Camelo-Méndez, G.A., Agama-Acevedo, E., Sanchez-Rivera, M.M., Bello-Pérez, L.A. (2016). Effect on in vitro starch digestibility of Mexican blue maize anthocyanins. Food Chemistry, 211, 281-284.
- 15. Cevallos-Casals, B.A., Cisneros-Zevallos, L. (2004). Stability of anthocyanin-based aqueous extracts of Andean purple corn and red-fleshed sweet potato compared to synthetic and natural colorants. Food Chemistry, 86(1), 69-77.
- 16. Chander, S., Meng, Y.J., Zhang, Y.R., Yan, J.B., Li, J.S. (2008). Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. Journal of Agricultural and Food Chemistry, 56(15), 6506-6511.
- 17. Chavez-Rivera, R., Ordoñez-Gomez, E. (2013). Total polyphenols, anthocyanins and antioxidant capacity (DPPPH and ABTS) during processing of cocoa liquor and cocoa powder. Revista ECIPerú, 10(1), 42-50 (in Spanish; English abstract).
- 18. Chen, L., Yang, M., Mou, H., Kong, Q. (2018). Ultrasound‐assisted extraction and characterization of anthocyanins from purple corn bran. Journal of Food Processing and Preservation, 42(1), art. no. e13377.
- 19. Cisowska, A., Wojnicz, D., Hendrich, A.B. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural Product Communications, 6(1), 149-156.
- 20. Cone, K.C. (2007). Anthocyanin synthesis in maize aleurone tissue. In O.-A. Olsen (Ed.) Endosperm. Developmental and Molecular Biology, Springer, Berlin, Heidelberg, Germany, pp. 121-139.
- 21. Cooper-Driver, G.A. (2001). Contributions of Jeffrey Harborne and co-workers to the study of anthocyanins. Phytochemistry, 56(3), 229-236.
- 22. Couteau, D., McCartney, A.L., Gibson, G.R., Williamson, G., Faulds, C.B. (2001). Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. Journal of Applied Microbiology, 90(6), 873-881.
- 23. Cui, L., Gao, R., Dong, S., Zhang, J., Liu, P., Zhang, H., Meng, J., Shi, D. (2012). Effects of ear shading on the anthocyanin contents and quality of kernels in various genotypes of maize. Australian Journal of Crop Science, 6(4), 704-710.
- 24. Dangles, O., Elhajji, H. (1994). Synthesis of 3‐methoxy‐and 3‐(β‐D‐glucopyranosyloxy) flavylium ions. Influence of the flavylium substitution pattern on the reactivity of anthocyanins in aqueous solution. Helvetica Chimica Acta, 77(6), 1595-1610.
- 25. de Ferrars, R.M., Czank, C., Zhang, Q., Botting, N.P., Kroon, P.A., Cassidy, A., Kay, C.D. (2014). The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology, 171(13), 3268-3282.
- 26. de la Parra, C., Serna Saldivar, S.O., Hai, L.R. (2008). Effect of processing on the phytochemical profiles and antioxidant activity of corn production of masa, tortillas and tortilla chips. Journal of Agricultural and Food Chemistry, 55(10), 4177-4183.
- 27. de Pascual-Teresa, S., Santos-Buelga, C., Rivas-Gonzalo, J. (2002). LC-MS analysis of anthocyanins extracts from purple corn cob. Journal of the Science of Food and Agriculture, 82(9), 1003-1006.
- 28. De Rosso, V.V., Moran Vieyra, F.E., Mercadante, A.Z., Borsarelli, C.D. (2008). Singlet oxygen quenching by anthocyanin's flavylium cations. Free Radical Research, 42(10), 885-891.
- 29. Duangpapeng, P., Lertrat, K., Lomthaisong, K., Paul Scott, M., Suriharn, B. (2019). Variability in anthocyanins, phenolic compounds and antioxidant capacity in the tassels of collected waxy corn germplasm. Agronomy - Basel, 9(3), art. no. 158.
- 30. Escalante-Aburto, A., Ramirez-Wong, B., Torres-Chavez, P.I., Barron-Hoyos, J.M., Figueroa-Cardenas, J.D., Lopez-Cervantes, J. (2013a). The nixtamalization process and its effect on anthocyanin content of pigmented maize, a review. Revista Fitotecnia Mexicana, 36(4), 429-437 (in Spanish; English abstract).
- 31. Escalante-Aburto, A., Ramirez-Wong, B., Torres-Chavez, P.I., Figueroa-Cardenas, J.D., Lopez-Cervantes, J., Barron-Hoyos, J.M., Morales Rosas, I. (2013b). Effect of extrusion processing parameters on anthocyanin content, physicochemical properties of nixtamalized blue corn expanded extrudates. CyTA - Journal of Food, 11, SI, 29-37.
- 32. Espinosa Trujillo, E., Mendoza Castillo, M., Castillo Gonzalez, F., Ortiz Cereceres, J., Delgado Alvarado, A., Carrillo Salazar, A. (2009). Anthocyanin accumulation in pericarp and aleurone layer of maize kernel and their genetic effects on native pigmented varieties. Revista Fitotecnia Mexicana, 32(4), 303-309 (in Spanish; English abstract).
- 33. Fan, X., Fan, B., Wang, Y., Yang, W. (2016). Anthocyanin accumulation enhanced in Lc-transgenic cotton under light and increased resistance to bollworm. Plant Biotechnology Reports, 10(1), 1-11.
- 34. Fang, J. (2014). Bioavailability of anthocyanins. Drug Metabolism Reviews, 46(4), 508-520.
- 35. Felgines, C., Talavera, S., Texier, O., Gil-Izquierdo, A., Lamaison, J.L., Remesy, C. (2005). Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. Journal of Agricultural and Food Chemistry, 53(20), 7721-7727.
- 36. Fernandez‐Aulis, F., Hernandez‐Vazquez, L., Aguilar‐Osorio, G., Arrieta‐Baez, D., Navarro‐Ocana, A. (2019). Extraction and identification of anthocyanins in corn cob and corn husk from Cacahuacintle maize. Journal of Food Science, 84(5), 954-962.
- 37. Flores-Cortez, D., Villalobos-Pacheco, E., Rojo-Mejia, A., Palomino-Yamamoto, P., Martin-Ramírez, Y. (2018). Osteoarticular protection of Zea mays L. purple variety (purple corn) in experimental arthritis in rats. Revista Peruana de Medicina Experimental y Salud Pública, 35(3), 441-448 (in Spanish; English abstract).
- 38. Fossen, T., Slimestad, R., Andersen, Ø.M. (2001). Anthocyanins from maize (Zea mays) and reed canarygrass (Phalaris arundinacea). Journal of Agricultural and Food Chemistry, 49(5), 2318-2321.
- 39. Foy Valencia, E. (2010). Los efectos de las antocianinas extraídas de Zea mays L. (maíz morado) sobre las hiperlipidemias en ratas albinas. Biotempo, 10, 32-38 (in Spanish; English abstract).
- 40. Fukamachi, K., Imada, T., Ohshima, Y., Xu, J., Tsuda, H. (2008). Purple corn color suppresses Ras protein level and inhibits 7,12-dimethylbenz[a]antracene-induced mamary carcinogenesis in the rat. Cancer Science, 99(9), 1841-1846.
- 41. Galvez Ranilla, L., Christopher, A., Sarkar, D., Shetty, K., Chirinos, R., Campos, D. (2017). Phenolic composition and evaluation of the antimicrobial activity of free and bound phenolic fractions from a Peruvian purple corn (Zea mays L.) accession. Journal of Food Science, 82(12), 2968-2976.
- 42. Gläßgen, W.E., Seitz, H.U. (1992). Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta, 186(4), 582-585.
- 43. Goufo, P., Trindale, H. (2014). Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science and Nutrition, 2(2), 75-104.
- 44. Guillen-Sanchez, J., Mori-Arismendi, S., Paucar-Menacho, L. (2014). Characteristics and functional properties of purple corn (Zea mays L.) var. subnigroviolaceo. Scientia Agropecuaria, 5, 211-217 (in Spanish; English abstract).
- 45. Gurrola-Diaz, C., Garcia-Lopez, P., Sanchez-Enriquez, S., Troyo-Sanroman, R., Andrade-Gonzalez, I., Gomez-Leyva, J. (2010). Effects of Hibiscus sabdariffa extract powder and preventive treatment (diet) on the lipid profiles of patients with metabolic syndrome (MeSy). Phytomedicine, 17(7), 500-505.
- 46. Guzman-Geronimo, R.J., Alarcon-Zavaleta, T.M., Oliart-Ros, R.M., Meza-Alvarado, J.E., Herrera-Meza, S., Chavez-Servia, J.L. (2017). Blue maize extract improves blood presure, lipid profiles, and adipose tissue in high-sucrose diet-induced metabolic syndrome in rats. Journal of Medicinal Food, 20(2), 110-115.
- 47. Harakotr, B., Suriharn, B., Tangwongchai, R., Scott, M. P., Lertrat, K. (2014). Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages. Journal of Functional Foods, 9, 109-118.
- 48. He, J., Giusti, M. (2010). Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1, 163-187.
- 49. He, J., Magnuson, B.A., Giusti, M.M. (2005). Analysis of anthocyanins in rat intestinal contents-impact of anthocyanin chemical structure on fecal excretion. Journal of Agricultural and Food Chemistry, 53(8), 2859-2866.
- 50. Hernández‐Uribe, J.P., Agama‐Acevedo, E., Islas‐Hernández, J.J., Tovar, J., Bello‐Pérez, L.A. (2007). Chemical composition and in vitro starch digestibility of pigmented corn tortilla. Journal of the Science of Food and Agriculture, 87(13), 2482-2487.
- 51. Herrera-Sotero, M.Y., Cruz-Hernández, C.D., Trujillo-Carretero, C., Rodríguez-Dorantes, M., García-Galindo, H.S., Chávez-Servia, J.L., Oliart-Ros, R.M., Guzmán-Gerónimo, R.I. (2017). Antioxidant and antiproliferative activity of blue corn and tortilla from native maize. Chemistry Central Journal, 11(1), art. no. 110.
- 52. Hong, S.H., Heo, J.I., Kim, J.H., Kwon, S.O., Yeo, K.M., Bakowska-Barczak, A.M., Kolodziejczyk, P., Ryu, O.H., Choi, M.K., Kang, Y.H., Lim, S.S., Suh, H.W., Huh, S.O., Lee, J.Y. (2013). Antidiabetic and beta cell-protection activities of purple corn anthocyanins. Biomolecules & Therapeutics, 21(4), 284-289.
- 53. Horbowicz, M., Kosson, R., Grzesiuk, A., Dębski, H. (2008). Anthocyanins of fruits and vegetables – their occurrence, analysis and role in human nutrition. Vegetable Crops Research Bulletin, 68, 5-22.
- 54. Hosoda, K., Miyaji, M., Matsuyama, H., Haga, S., Ishizaki, H., Nonaka, K. (2012). Effect of supplementation of purple pigment from anthocyanin-rich corn (Zea mays L.) on blood antioxidant activity and oxidation resistance in sheep. Livestock Science, 145(1-3), 266-270.
- 55. Hu, C.Y., Li, Q.L., Shen, X.F., Quan, S., Lin, H., Duan, L., Wang, Y.F., Luo, Q., Qu, G.R., Han, Q., Lu, Y., Zhang, D.B., Yuan, Z., Shi, J.X. (2016). Characterization of factors underlying the metabolic shifts in developing kernels of colored maize. Scientific Reports, 6, art. no. 35479.
- 56. Huang, B., Wang, Z., Park, J., Ryu, O., Choi, M., Lee, J.-Y., Kang, Y., Lim, S. (2015). Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutrition Research and Practice, 9(1), 22-29.
- 57. Intuyod, K., Priprem, A., Limphirat, W., Charoensuk, L., Pinlaor, P., Pairojkul, C., Lertrat, K., Pinlaor, S. (2014). Anti-inflammatory and anti-periductal fibrosis effects of an anthocyanin complex in Opisthorchis viverrini-infected hamsters. Food and Chemical Toxicology, 74, 206-215.
- 58. Jansen, G., Flamme, W. (2006). Coloured potatoes (Solanum Tuberosum L.) – Anthocyanin content and tuber quality. Genetic Resources and Crop Evolution, 53(7), 1321-1331.
- 59. Kallam, K., Appelhagen, I., Luo, J., Albert, N., Zhang, H.B., Deroles, S., Hill, L., Findlay, K., Andersen, O.M., Davies, K., Martin, C. (2017). Aromatic decoration determines the formation of anthocyanic vacuolar inclusions. Current Biology, 27(7), 945-957.
- 60. Kalt, W., Blumberg, J., McDonald, J., Vinqvist-Tymchuk, M., Fillmore, S., Graf, B., O´Leary, J., Milbury, P. (2008). Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. Journal of Agricultural and Food Chemistry, 56(3), 705-712.
- 61. Kang, M.-K., Lim, S.S., Lee, J.-Y., Yeo, K.M., Kang, Y.-H. (2013). Anthocyanin-rich purple corn extract inhibit diabetes-associated glomerular angiogenesis. PloS One, 8(11), art. no. e79823.
- 62. Kasote, D.M., Katyare, S.S., Hegde, M.V., Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982-991.
- 63. Kay, C. (2006). Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews, 19(1), 137-146.
- 64. Kay, C.D., Mazza, G., Holub, B.J. (2005). Anthocyanins exist in the circulation primarily as metabolites in adult men. Journal of Nutrition, 135(11), 2582-2588.
- 65. Kongpichitchoke, T., Hsu, J.L., Huang, T.C. (2015). Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies. Journal of Agricultural and Food Chemistry, 63(18), 4580-4586.
- 66. Lago, C., Cassani, E., Zanzi, C., Landoni, M., Trovato, R., Pilu, R. (2014). Development and study of a maize cultivar rich in anthocyanins: coloured polenta, a new functional food. Plant Breeding, 133(2), 210-217.
- 67. Lago, C., Landoni, M., Cassani, E., Doria, E., Nielsen, E., Pilu, R. (2013). Study and characterization of a novel functional food: purple popcorn. Molecular Breeding, 31(3), 575-585.
- 68. Langley, P.C., Pergolizzi, J.V., Taylor, R., Ridgway, C. (2015). Antioxidant and associated capacities of camu camu (Myrciaria dubia): a sistematic review. Journal of Alternative and Complementary Medicine, 21(1), 8-14.
- 69. Levi, M.A.B., Scarminio, L.S., Poppi, R.J., Trevisan, M.G. (2004). Three-way chemometric method study and UV-Vis absorbance for the study of simultaneous degradation of anthocyanins in flowers of the Hibiscus rosa-sinensys species. Talanta, 62(2), 299-305.
- 70. Li, C.Y., Kim, H.W., Won, S.R., Min, H.K., Park, K.J., Park, J.Y., Ahn, M.S., Rhee, H.L. (2008). Corn husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry, 56(23), 11413-11416.
- 71. Li, J., Kang, M.-K., Kim, J.-K., Kim, J.-L., Kang, S.-W., Lim, S.S., Kang, Y.-H. (2012b). Purple corn anthocyanins retard diabetes-associated glomerulosclerosis in mesangial cells and db/db mice. European Journal of Nutrition, 51(8), 961-973.
- 72. Li, J., Lim, S., Lee, J.-Y., Kim, J.-K., Kang, S.-W., Kim, J.-L., Kang, Y-H. (2012a). Purple corn anthocyanins dampened high-glucose-induced mesangial fibrosis and inflammation: possible renoprotective role in diabetic nephropathy. The Journal of Nutritional Biochemistry, 23(4), 320-331.
- 73. Li, Q., Somavat, P., Singh, V., Chatham, L., de Mejia, E. G. (2017). A comparative study of anthocyanin distribution in purple and blue corn coproducts from three conventional fractionation processes. Food Chemistry, 231, 332-339.
- 74. Li, T.C., Zhang, W., Yang, H.Y., Dong, Q., Ren, J., Fan, H.H., Zhang, X., Zhou, Y.B. (2019). Comparative transcriptome analysis reveals differentially expressed genes related to the tissue-specific accumulation of anthocyanins in pericarp and aleurone layer for maize. Scientific Reports, 9, art. no. 2485.
- 75. Li, X., Qian, X., Lǚ, X., Wang, X.H., Jia, N., Zhang, M.S., Ren, M.J. (2018). Upregulated structural and regulatory genes involved in anthocyanin biosynthesis for coloration of purple grains during the middle and late grain-filling stages. Plant Physiology and Biochemistry, 130, 235-247.
- 76. Limsitthichaikoon, S., Khampaenjiraroch, B., Damrongrungruang, T., Limphirat, W., Thapphasaraphong, S. Priprem, A. (2018). Topical oral wound healing potential of anthocyanin complex: animal and clinical studies. Therapeutic Delivery, 9(5), 359-374.
- 77. Liu, Y.X., Song, X., Zhang, D., Zhou, F., Wang, D., Wei, Y., Gao, F.Y., Xie, L.Y., Jia, G., Wu, W., Ji, B. (2012). Blueberry anthocyanins: protection against ageing and light-induced damage in retinal pigment. British Journal of Nutrition, 108(1), 16-27.
- 78. Lobo, V., Patil, A., Phatak, A, Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Review, 4(8), 118-126.
- 79. Lopez-Martinez, L.Y., Oliart-Ros, R.M., Valerio-Alfaro, G., Lee, C.-H., Parkin, K.L., Garcia, H.S. (2009). Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT - Food Science and Technology, 42(6), 1187-1192.
- 80. Luna-Vital, D.A., de Mejia, E.G. (2018). Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS One, 13(7), art. no. e0200449.
- 81. Mamani-Choquepata, R., Mamani-Quispe, P., Manchego-Rosado, L., Moreno-Loaiza, O., Paz-Aliaga, A. (2013). Dose effect of anthocyanins of three extracts of Zea Mays L. (purple corn) in the vasodilation of rat aortic rings. Revista Peruana de Medicina Experimental y Salud Publica, 30(4), 714-728 (in Spanish).
- 82. Manach, C., Williamson, G., Morand, C., Scalbert, A., Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 81(1), 230S-242S.
- 83. Mazza, G., Brouillard, R. (1990). The mechanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry, 29(4), 1097-1102.
- 84. Mazza, G., Kay, C.D., Cottrell, T., Holub, B.J. (2002). Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. Journal of Agricultural and Food Chemistry, 50(26), 7731-7737.
- 85. McCord, J.M. (2000). The evolution of free radicals and oxidative stress. American Journal of Medicine, 108(8), 652–659.
- 86. McGhie, T., Walton, M. (2007). The bioavailability and absorption of anthocyanins: towards a better understanding. Molecular Nutrition & Food Research, 51(6), 702-713.
- 87. Mex-Alvarez, R., Garma-Quen, P., Bolivar-Fernandez, N., Guillen-Morales, M., Tut-Heredia, J. (2016). Influence of the maize varieties Zea mays L. of Campeche on the weight gain in mice. Revista Iberoamericana de Ciencias, 3(5), 106-113 (in Spanish; English abstract).
- 88. Mora-Rochin, S., Gaxiola-Cuevas, N., Gutierrez-Uribe, J.A., Milan-Carrillo, J., Milan-Noris, E.M., Reyes-Moreno, C., Serna-Saldivar, S.O., Cuevas-Rodriguez, E.O. (2016). Effect of traditional nixtamalization on anthocyanin content and profile in Mexican blue maize (Zea mays L.) landraces. LWT - Food Science and Technology, 68, 563-569.
- 89. Moreno-Loaiza, O., Paz-Aliaga, A. (2010). Vasodilator effect mediated by nitric oxide of the Zea mays L (andean purple corn) hydroalcoholic extract in aortic rings of rat. Revista Peruana de Medicina Experimental y Salud Publica, 27(4), 527-531 (in Spanish; English abstract).
- 90. Mullen, W., Edwards, C.A., Crozier, A. (2006). Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl-and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. British Journal of Nutrition, 96(1), 107-116.
- 91. Nabae, K., Hayashi, S.M., Kawabe, M., Ichihara, T., Hagiwara, A., Tamano, S., Tsushima Y., Uchida, K., Koda, T., Nakamura, M., Ogawa, K., Shirai, T. (2008). A 90-day oral toxicity study of purple corn color, a natural food colorant, in F344 rats. Food and Chemical Toxicology, 46(2), 774-780.
- 92. Navolokin, N.A., Polukonova, N.V., Maslyakova, G.N., Bucharskaya, A.B., Durnova, N.A. (2012). Effect of extracts of Gratiolla Officinalis and Zea Mays on the tumor and the morphology of the internal organs of rats with transplanted liver cancer. Russian Open Medical Journal, 1(2), 1-4.
- 93. Pandey, K.B., Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270-278.
- 94. Pedreschi, R., Cisneros-Zevallos, L. (2007). Phenolic profiles of Andean purple corn (Zea mays L). Food Chemistry, 100(3), 956–963.
- 95. Peixoto, H., Roxo, M., Krstin, S., Rohrig, T., Richling, E., Wink, M. (2016). An anthocyanin-rich extract of Acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. Journal of Agriculture and Food Chemistry, 64(6), 1283-1290.
- 96. Petrov, V., Diniz, A.M., Cunha-Silva, L., Parola, A.J., Pina, F. (2013). Kinetic and thermodynamic study of 2′-hydroxy-8-methoxyflavylium. Reaction network interconverting flavylium cation and flavanone. RSC Advances, 3(27), 10786-10794.
- 97. Piperno, D.R., Ranere, A.J., Holst, I., Iriarte, J., Dickau, R. (2009). Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5019-5024.
- 98. Prior, R.L. (2003). Fruits and vegetables in the prevention of cellular oxidative damage. The American Journal of Clinical Nutrition, 78(3), 570S-578S.
- 99. Ramirez-Tortosa, C., Andersen, Ø.M., Gardner, P.T., Morrice, P.C., Wood, S.G., Duthie, S.J., Collins, A.R, Duthie, G.G. (2001). Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Biology and Medicine, 31(9), 1033-1037.
- 100. Ramos-Escudero, F., Muñoz, A.M., Alvarado-Ortíz, C., Alvarado, A., Yáñez, J.A. (2012). Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. Journal of Medicinal Food, 15(2), 206-215.
- 101. Revilla, P., Soengas, P., Malvar, R.A. (2018). Effects of antioxidant activity of black maize in corn borer larval survival and growth. Spanish Journal of Agricultural Research, 16(1), art. no. e1004.
- 102. Rice-Evans, C.A., Miller, N.J., Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956.
- 103. Rice-Evans, C.A., Miller, N.J., Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159.
- 104. Rocchetti, G., Giuberti, G., Gallo, A., Bernardi, J., Marocco, A., Lucini, L. (2018). Effect of dietary polyphenols on the in vitro starch digestibility of pigmented maize varieties under cooking conditions. Food Research International, 108, 183-191.
- 105. Roh, K.-B., Kim, H., Shin, S., Kim, Y.-S., Lee, J.-A., Kim, M.O., Jung, E., Lee, J., Park, D. (2016). Anti-inflammatory effects of Zea mays L. husk extracts. BMC Complementary and Alternative Medicine, 16(1), art. no. 298.
- 106. Rojas-Molina, I., Gutierrez-Cortez, E., Palacios-Fonseca, A., Baños, L., Pons-Hernandez, J.L., Guzman-Maldonado, S.H., Pineda-Gomez, P., Rodriguez, M.E. (2007). Study of structural and thermal changes in endosperm of quality protein maize during nixtamalization process. Cereal Chemistry, 84(4), 304-312.
- 107. Sadilova, E., Stintzing, F.O., Carle, R. (2006). Anthocyanins, colour and antioxidant properties of eggplant (Solanum molongena L.) and violet pepper (Capsicum annum L.) peel extracts. Zeitschrift for Naturforschung C – A Journal of Biosciences, 61(7-8), 527-535.
- 108. Salinas, M., Soto, H., Martinez, B., Gonzalez, H., Ortega, P. (1999). Análisis de antocianinas en maíces de grano azul y rojo provenientes de cuatro razas. Revista de Fitotecnia Mexicana, 22(2), 161-174 (in Spanish; English abstract).
- 109. Salinas-Moreno, Y., Cruz-Chavez, F., Diaz-Ortiz, S., Castillo-Gonzalez, F. (2012). Pigmented maize grains from Chiapas, physical characteristics, anthocyanin content and nutraceutical value. Revista de Fitotecnia Mexicana, 35(1), 33-41 (in Spanish, English abstract).
- 110. Salinas-Moreno, Y., Garcia-Salinas, C., Coutiño-Estrada, B., Vidal-Martinez, V. (2013). Content and type variability of anthocyanins in blue/purple colored grains of Mexican maize populations. Revista de Fitotecnia Mexicana, 36(3), 285-294 (in Spanish, English abstract).
- 111. Salinas-Moreno, Y., Rubio Hernández, D., Díaz Velázquez, A. (2005b). Extraction and use of pigments from maize grains (Zea mays L.) as colorants in yogurt. Archivos Latinoamericanos de Nutrición, 55(3), 293-298 (in Spanish; English abstract).
- 112. Salinas-Moreno, Y., Salas-Sanchez, G., Rubio-Hernandez, D., Ramos-Lobato, N. (2005a). Characterization of anthocyanins extracts from maize kernels. Journal of Chromatographic Science, 43(9), 483-487.
- 113. Sanchez J.J., Goodman, M.M., Stuber, C.W. (2000). Isozymatic and morphological diversity in the races of maize of Mexico. Economic Botany, 54(1), 43-59.
- 114. Serna-Saldivar, S., Gutierrez-Uribe, J., Mora-Rochin, S., Garcia-Lara, S. (2013). Nutraceutical potential of native maize and changes during traditional and extrusion processing. Revista de Fitotecnia Mexicana, 36(3), 295-304 (in Spanish, English abstract).
- 115. Sharma, M., Cortes-Cruz, M., Ahern, K.R., McMullen, M., Brutnell, T.P., Chopra, S. (2011). Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize. Genetics, 188(1), 69-79.
- 116. Shen, L.Y., Petolino, J.F. (2006). Pigmented maize seed via tissue-specific expression of anthocyanin pathway gene transcription factors. Molecular Breeding, 18(1), 57-67.
- 117. Styles, E., Ceska, O. (1972). Flavonoid pigments in genetic strains of maize. Phytochemistry, 11(10), 3019-3021.
- 118. Suket, N., Srisook, E., Hrimpeng, K. (2014). Antimicrobial activity of the anthocyanins isolated from purple field corn (Zea mays L.) cob against Candida spp. Journal of Pharmacy and Biological Sciences, 9(4), 40-44.
- 119. Takeoka, G.R., Dao, L.T., Full, G.A., Wong, R.Y., Harden, L.A., Edwards, R.A., Berrios, J.D. (1997). Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. Journal of Agricultural and Food Chemistry, 45(9), 3395-3400.
- 120. Talavéra, S., Felgines, C., Texier, O., Besson, C., Manach, C., Lamaison, J., Rémésy, C. (2004). Anthocyanins are efficiently absorbed from the small intestine in rats. Journal of Nutrition, 134(9), 2275-2279.
- 121. Thiraphatthanavong, P., Wattanathorn, J., Muchimapura, S., Thukham-Mee, W., Wannanon, P., Tong-un, T., Suriharn, B., Lertrat, K. (2014). Preventive effect of Zea mays L. (purple waxy corn) on experimental diabetic cataract. BioMed Research International, 2014, art. no. 507435.
- 122. Tian, Q.G., Giusti, M.M., Stoner, G.D., Schwartz, S.J. (2006). Urinary excretion of black raspberry (Rubus occidentalis) anthocyanins and their metabolites. Journal of Agricultural and Food Chemistry, 54(4), 1467-1472.
- 123. Tian, X.Z., Paengkoum, P., Paengkoum, S., Chumpawadee, S., Ban, C., Thongpea, S. (2019). Short communication: Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. Journal of Dairy Science, 102(1), 413-416.
- 124. Tiessen, A., Cubedo-Ruiz, E.A., Winkler, R. (2017). Improved representation of biological information by using correlation as distance function for heatmap cluster analysis. American Journal of Plant Sciences, 8(3), 502-516.
- 125. Toufektsian, M.C., de Longeril, M., Nagy, N., Salen, P., Donati, M.B., Giordano, L., Mock, H.P., Peterek, S., Matros, A., Petroni, K., Pilu, R., Rotilio, D., Tonelli, C., de Leiris, J., Bouchet, F., Martins, C. (2008). Chronic dietary intake of plant-derived anthocyanins protects the rat heart against ischemia-reperfusion Injury. Journal of Nutrition, 138(4), 747-752.
- 126. Tsuda, T. (2012). Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Molecular Nutrition & Food Research, 56(1), 159-170.
- 127. Tsuda, T., Horio, F., Osawa, T. (2000). The role of anthocyanins as an antioxidant under oxidative stress in rats. Biofactors, 13(1-4), 133-139.
- 128. Tsuda, T., Horio, F., Uchida, K., Aoki, H., Osawa, T. (2003). Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. Journal of Nutrition, 133(7), 2125-2130.
- 129. Urias-Lugo, D.A., Heredia, J.B., Muy-Rangel, M.D., Valdez-Torres, J.B., Serna-Saldivar, S.O., Gutierrez-Uribe, J.A. (2015b). Anthocyanins and phenolic acids of hybrid and native blue maize (Zea mays L.) extracts and their antiproliferative activity in mammary (MCF7), liver (HepG2), colon (Caco2 and HT29) and prostate (PC3) cancer cells. Plant Foods for Human Nutrition, 70(2), 193-199.
- 130. Urias-Lugo, D.A., Heredia, J.B., Serna-Saldivar, S.O., Muy-Rangel, M.D. Valdez-Torres, J.B. (2015a). Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA - Journal of Food, 13(3), 336-339.
- 131. Urias-Peraldi, M., Gutierrez-Uribe, J.A., Preciado-Ortiz, R.E., Cruz-Morales, A.S., Serna-Saldivar, S.O., Garcia-Lara, S. (2013). Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crops Research, 141, 69-76.
- 132. Villasante, A., Patro, B., Chew, B., Becerra, M., Wacyk, J., Overturf, K., Powell, M.S, Hardy, R.W. (2015). Dietary intake of purple corn extract reduces fat body content and improves antioxidant capacity and n-3 polyunsaturated fatty acid profile in plasma of rainbow trout, Oncorhynchus mykiss. Journal of the World Aquaculture Society, 46(4), 381-394.
- 133. Wallace, T.C., Giusti, M.M. (2015). Anthocyanins. Advances in Nutrition, 6(5), 620-622.
- 134. Wang, D., Wei, X., Yan, X., Jin, T., Ling, A. (2010). Protocatechuic acid, a metabolite of anthocyanins, inhibits monocyte adhesion and reduces atherosclerosis in apolipoprotein E-deficient mice. Journal of Agricultural and Food Chemistry, 58(24), 12722-12728.
- 135. Wang, H., Cao, G.H., Prior, R.L. (1997). Oxygen radical absorbing capacity of anthocyanins. Journal of Agricultural and Food Chemistry, 45(2), 304-309.
- 136. Wang, H., Nair, M.G., Strasburg, G.M., Chang, Y.C., Booren, A.M., Gray, J.I., DeWitt, D.L. (1999). Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. Journal of Natural Products, 62(2), 294-296.
- 137. Wang, L.S., Stoner, G.D. (2008). Anthocyanins and their role in cancer prevention. Cancer Letters, 269(2), SI, 281-290.
- 138. Wattanathorn, J., Thiraphatthanavong, P., Muchimapura, S., Thukhammee, W., Lertrat, K., Suriharn, B. (2015). The combined extract of Zingiber officinale and Zea mays (purple color) improves neuropathy, oxidative stress, and axon density in streptozotocin induced diabetic rats. Evidence-Based Complementary and Alternative Medicine, 2015, art. no. 301029.
- 139. Wu, T., Guo, X.Q., Zhang, M., Yang, L., Liu, R., Yin, J.J. (2017). Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice. Food & Function, 8(9), 3178-3186.
- 140. Yang, M., Kooh, S.I., Song, W.O., Chun, O.K. (2011). Food matrix affecting anthocyanin bioavailability: Review. Current Medicinal Chemistry, 18, 291-300.
- 141. Yang, Z., Zhai, W. (2010). Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innovative Food Science Emerging Technologies, 11(1), 169-176.
- 142. Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., Inoue, E., Kuromori, T., Ito, T., Shinozaki, K., Wangwattana, B., Yamazaki, M., Saito, K. (2012). Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant Journal, 69(1), 154-167.
- 143. Zhang, Q., Luna-Vital, D., de Mejia, E.G. (2019). Anthocyanins from colored maize ameliorated the inflammatory paracrine interplay between macrophages and adipocytes through regulation of NF-κB and JNK-dependent MAPK pathways. Journal of Functional Foods, 54, 175-186.
- 144. Zhang, Z., Yang, L., Ye, H., Du, X.F., Gao, Z.M., Zhang, Z.-L. (2010). Effects of pigment extract from black glutinous corncob in a high-fat-fed mouse model of hyperlipidemia. European Food Research and Technology, 230(6), 943-946.
- 145. Zhang, Z., Zhou, B., Wang, H.H., Wang, F., Song, Y.L., Liu, S.N., Xi, S.H. (2014). Maize purple plant pigment protects against fluoride-induced oxidative damage of liver and kidney in rats. International Journal of Environmental Research and Public Health, 11(1), 1020-1033.
- 146. Zhao, C.L., Chen, Z.J., Bai, X.S., Ding, C., Long, T.J., Wei, F.G., Miao, K.R. (2014). Structure-activity relationships of anthocyanidin glycosylation. Molecular Diversity, 18(3), 687-700.
- 147. Zhao, X.Y., Zhang, C., Guigas, C., Ma, Y., Corrales, M., Tauscher, B., Hu, X.S. (2009). Composition, antimicrobial activity, and antiproliferative capacity of anthocyanin extracts of purple corn (Zea mays L.) from China. European Food Research and Technology, 228(5), 759-765.
- 148. Žilić, S., Serpen, A., Akıllıoğlu, G., Gökmen, V., Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224-1231.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-91818ca5-7aa9-4f80-9cc9-aa7428821d5f