Warianty tytułu
Języki publikacji
Abstrakty
The Chinese power industry’s CO₂ emissions account for the largest proportion of the country’s total CO₂ emissions. Therefore, studying the influencing factors of CO₂ emissions in the power industry and developing mitigation policies are of great significance for reducing CO₂ emissions. According to the electricity-related data from 2000 to 2014 in China, this paper employed the improved STIRPAT model to examine the impact factors of economic growth, urbanization level, industrialization level, power consumption efficiency, power generation efficiency, and electric power structure of the CO₂ emissions in China’s power industry. Then we adopted the Ridge Regression method to fit the extended STIRPAT model. The results show that power generation efficiency is a decisive factor of CO₂ emissions reduction. Electric power structure and economic growth play important roles in reducing CO₂ emissions. Power consumption efficiency has a large potential to mitigate CO₂ emissions, while urbanization and industrialization levels are less important impact factors. Based on the above conclusions, the Chinese government needs to formulate appropriate policies in terms of power generation, supply, and consumption to reduce the power industry’s CO₂ emissions.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.373-382,fig.,ref.
Twórcy
autor
- Department of Economics and Management, North China Electric Power University, Baoding, Hebei 071003, China
- The Academy of Baoding Low-Carbon Development, Baoding, Hebei 071003, China
autor
- Department of Economics and Management, North China Electric Power University, Baoding, Hebei 071003, China
autor
- Department of Economics and Management, North China Electric Power University, Baoding, Hebei 071003, China
Bibliografia
- 1. FROLICHER T.L., PAYNTER D.J. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ. Res. Lett. 10 (7), 502, 2015.
- 2. WANG Q., CHEN Y. Status and outlook of China’s freecarbon electricity. Renew. Sust. Energ. Rev. 14 (3), 1014, 2010.
- 3. HUO M.L., HAN X.Y., SHAN B.G. Empirical study on key factors of carbon emission intensity of power industry. Elec. Power. 46 (12), 122, 2013.
- 4. SUN W., WANG J., REN Y. Research on CO₂ emissions from China’s electric power industry based on system dynamics model. Int. J. Ind. Syst. Eng. 22 (4), 423, 2016.
- 5. EHRLICH P.R., EHRLICH A.H. Population, resources, environment. issues in human ecology. J. Dyn. Syst. Meas. Control. 95 (1), 102, 1970.
- 6. DIETZ T., ROSZ E.A. Effects of population and affluence on CO₂ emissions. P. Natl. A. Sci. 94 (1), 175, 1997.
- 7. YORK R., ROSZ E.A., DIETA T. STIRPAT, IPAT and impact: analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econom. 46 (3), 351, 2003.
- 8. RAMANATHAN R. A multi-factor efficiency perspective to the relationships among world GDP, energy consumption and carbon dioxide emissions. Technol. Forecast. Soc. 73 (5), 483, 2006.
- 9. DALTON M., O’NEILL B., PRSKAWETZ A., JIANG L., PITKIN J. Population aging and future carbon emissions in the United States. Energ. Econ. 30 (2), 642, 2008.
- 10. STRETESKY P.B., LYNCH M.J. A cross-national study of the association between per capita carbon dioxide emissions and exports to the United States. Soc. Sci. Res. 38 (1), 239, 2009.
- 11. HUBACEK K., FENG K., CHEN B. Changing lifestyles towards a low carbon economy: an IPAT analysis for China. Energies. 5 (1), 22, 2012.
- 12. ZHAO X., LONG R.Y. An Empirical study on the present situation and factor decomposition of carbon emissions in Jiangsu Province. China. Pop. Res. Environ. 20 (7), 25, 2010.
- 13. TAN Z., LI L., WANG J., WANG J. Examining the driving forces for improving China’s CO₂ emission intensity using the decomposing method. Appl. Energ. 88 (12), 4496, 2010.
- 14. ZHANG B. China’s energy and electricity consumption and carbon intensity in 2020. China. Energ. 31 (3), 28, 2009.
- 15. WANG S., WANG H.M., CHEN H., SUN X.L., LI Y.C. Study on influence factors of carbon emissions in Jiangsu Province coastal areas based on Divisia decomposition method. Res & Environ in the Yangtze Basin. 20 (10), 1243, 2011.
- 16. SHEN P. China’s CO₂ emissions, economic growth, energy consumption linkage and its influencing factors analysis. Northeast University of Finance and Economics. 6 (1), 19, 2012.
- 17. LIN B.Q., FEI R.L. Regional differences of CO₂ emissions performance in China’s agricultural sector: A Malmquist index approach. Eur. J. Agrone. 70 (4), 33, 2015.
- 18. XU B., LIN B.Q. Regional differences in the CO₂ emissions of China’s iron and steel industry: regional heterogeneity. Energ. Policy. 88 (24), 422, 2016.
- 19. HE J., WANG H. Economic structure, development policy and environmental quality: an empirical analysis of environmental Kuznets curves with Chinese municipal data. Ecol. Econ. 76 (1), 49, 2012.
- 20. SONG X.H., ZHANG Y.F., WANG Y.M., FENG Y.C. Based on the IPAT extension model to analyze the impact of population factors on carbon emissions. Environ. Sci. Res. 25 (1), 109, 2012.
- 21. ZHU Y.C., ZHANG S.J. Analysis of driving factors of economic carbon emissions in Beijing based on the STIRPAT model. Spec. Zone. Econ. 12 (3), 77, 2012.
- 22. EGGLESTON S. Estimation of emissions from CO₂ capture and storage: the 2006 IPCC guidelines for National Greenhouse Gas Inventories. 2006.
- 23. LIN B.Q., & WANG X. Promoting energy conservation in China’s iron & steel sector. Energy. 73 (60), 465, 2014.
- 24. MA X., CHAI M., LUO L., LUO Y., HE W., LI G. An assessment on Shanghai’s energy and environment impacts of using MARKAL model. J. Renew. Sustain Ener. 7 (1), 1137, 2015.
- 25. DONALD W., MARQUARIDT. Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics. 12 (3), 591, 1970.
- 26. WANG P., WU W., ZHU B., WEI Y. Examining the impact factors of energy-related CO₂ emissions using the STIRPAT model in Guangdong province, china. Appl. Energ. 106 (11), 65, 2013.
- 27. China N.B.S. China Statistical Yearbook. China Statistical Publishing House: Beijing, China, 2015 [In Chinese].
- 28. China E.P.Y. China Electric Power Yearbook. China Electric Power Publishing Press: Beijing, China, 2015 [In Chinese].
- 29. WANG Z., YIN F., ZHANG Y., ZHANG X. An empirical research on the influencing factors of regional CO₂ emissions: evidence from Beijing city, China. Appl. Energ. 100 (4), 277, 2011.
- 30. WANG C., WANG F., ZHANG X., YANG Y., SU Y., YE Y. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sust. Energ. Rev. 67 (12), 51, 2017.
- 31. LIN B., WU Y., ZHANG L. Estimates of the potential for energy conservation in the Chinese steel industry. Energ. Policy. 39 (6), 3680, 2011.
- 32. DOMAN G. A long-run relationship investigation of energy consumption and air pollution in Togo. Inter. J. Eng. Sci. Res. Technol. 3 (6), 342, 2014.
- 33. CHO J., JEONG S., KIM Y. Commercial and research battery technologies for electrical energy storage applications. Prog. Energ. Combust. 48 (45), 84, 2015
- 34. MI G.F., ZHAO T. Research on the relationship among economic growth, electricity consumption and carbon emissions in China. Sci. Manag. Res. 12 (2), 43, 2012.
- 35. YU B., YAO X. Technology diffusion and carbon intensity of electric power in China. J. Renew. Sustain. Ener. 4 (3), 3936, 2012.
- 36. WEN L., CAO Y. Factor decomposition analysis of China’s energy-related CO₂ emissions using STIRPAT model. Pol. J. Environ. Stud. 24 (5), 2261, 2015.
- 37. FENG W., WU L., CHAO Y. Driving factors for growth of carbon dioxide emissions during economic development in China. Econ. Res. J. 6 (3), 92, 2010.
- 38. ZHAO X., MA Q., YANG R. Factors influencing CO₂ emissions in China’s power industry: co-integration analysis. Energ. Policy. 57 (6), 89, 2013.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-916552ec-6530-4126-8290-c52f8ca57d23